Drone-DETR: Efficient Small Object Detection for Remote Sensing Image Using Enhanced RT-DETR Model

被引:21
作者
Kong, Yaning [1 ]
Shang, Xiangfeng [1 ]
Jia, Shijie [1 ]
机构
[1] Dalian Jiaotong Univ, Coll Comp & Commun Engn, Dalian 116028, Peoples R China
关键词
UAV object detection; RT-DETR; small object detection; feature fusion; visual sensors;
D O I
10.3390/s24175496
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Performing low-latency, high-precision object detection on unmanned aerial vehicles (UAVs) equipped with vision sensors holds significant importance. However, the current limitations of embedded UAV devices present challenges in balancing accuracy and speed, particularly in the analysis of high-precision remote sensing images. This challenge is particularly pronounced in scenarios involving numerous small objects, intricate backgrounds, and occluded overlaps. To address these issues, we introduce the Drone-DETR model, which is based on RT-DETR. To overcome the difficulties associated with detecting small objects and reducing redundant computations arising from complex backgrounds in ultra-wide-angle images, we propose the Effective Small Object Detection Network (ESDNet). This network preserves detailed information about small objects, reduces redundant computations, and adopts a lightweight architecture. Furthermore, we introduce the Enhanced Dual-Path Feature Fusion Attention Module (EDF-FAM) within the neck network. This module is specifically designed to enhance the network's ability to handle multi-scale objects. We employ a dynamic competitive learning strategy to enhance the model's capability to efficiently fuse multi-scale features. Additionally, we incorporate the P2 shallow feature layer from the ESDNet into the neck network to enhance the model's ability to fuse small-object features, thereby enhancing the accuracy of small object detection. Experimental results indicate that the Drone-DETR model achieves an mAP50 of 53.9% with only 28.7 million parameters on the VisDrone2019 dataset, representing an 8.1% enhancement over RT-DETR-R18.
引用
收藏
页数:18
相关论文
共 44 条
[1]   UAV Computing-Assisted Search and Rescue Mission Framework for Disaster and Harsh Environment Mitigation [J].
Alsamhi, Saeed Hamood ;
Shvetsov, Alexey, V ;
Kumar, Santosh ;
Shvetsova, Svetlana, V ;
Alhartomi, Mohammed A. ;
Hawbani, Ammar ;
Rajput, Navin Singh ;
Srivastava, Sumit ;
Saif, Abdu ;
Nyangaresi, Vincent Omollo .
DRONES, 2022, 6 (07)
[2]   MS-Faster R-CNN: Multi-Stream Backbone for Improved Faster R-CNN Object Detection and Aerial Tracking from UAV Images [J].
Avola, Danilo ;
Cinque, Luigi ;
Diko, Anxhelo ;
Fagioli, Alessio ;
Foresti, Gian Luca ;
Mecca, Alessio ;
Pannone, Daniele ;
Piciarelli, Claudio .
REMOTE SENSING, 2021, 13 (09)
[3]  
Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, 10.48550/arXiv.2004.10934, DOI 10.48550/ARXIV.2004.10934]
[4]  
Calderon Marco, 2020, Developments and Advances in Defense and Security. Proceedings of MICRADS 2020. Smart Innovation, Systems and Technologies (SIST 181), P55, DOI 10.1007/978-981-15-4875-8_5
[5]   Real-Time Object Detection Based on UAV Remote Sensing: A Systematic Literature Review [J].
Cao, Zhen ;
Kooistra, Lammert ;
Wang, Wensheng ;
Guo, Leifeng ;
Valente, Joao .
DRONES, 2023, 7 (10)
[6]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[7]   Run, Don't Walk: Chasing Higher FLOPS for Faster Neural Networks [J].
Chen, Jierun ;
Kao, Shiu-Hong ;
He, Hao ;
Zhuo, Weipeng ;
Wen, Song ;
Lee, Chul-Ho ;
Chan, S. -H. Gary .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :12021-12031
[8]   Extended Feature Pyramid Network for Small Object Detection [J].
Deng, Chunfang ;
Wang, Mengmeng ;
Liu, Liang ;
Liu, Yong ;
Jiang, Yunliang .
IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 :1968-1979
[9]  
Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, DOI 10.48550/ARXIV.2010.11929]
[10]   VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results [J].
Du, Dawei ;
Zhu, Pengfei ;
Wen, Longyin ;
Bian, Xiao ;
Ling, Haibin ;
Hu, Qinghua ;
Peng, Tao ;
Zheng, Jiayu ;
Wang, Xinyao ;
Zhang, Yue ;
Bo, Liefeng ;
Shi, Hailin ;
Zhu, Rui ;
Kumar, Aashish ;
Li, Aijin ;
Zinollayev, Almaz ;
Askergaliyev, Anuar ;
Schumann, Arne ;
Mao, Binjie ;
Lee, Byeongwon ;
Liu, Chang ;
Chen, Changrui ;
Pan, Chunhong ;
Huo, Chunlei ;
Yu, Da ;
Cong, Dechun ;
Zeng, Dening ;
Pailla, Dheeraj Reddy ;
Li, Di ;
Wang, Dong ;
Cho, Donghyeon ;
Zhang, Dongyu ;
Bai, Furui ;
Jose, George ;
Gao, Guangyu ;
Liu, Guizhong ;
Xiong, Haitao ;
Qi, Hao ;
Wang, Haoran ;
Qiu, Heqian ;
Li, Hongliang ;
Lu, Huchuan ;
Kim, Ildoo ;
Kim, Jaekyum ;
Shen, Jane ;
Lee, Jihoon ;
Ge, Jing ;
Xu, Jingjing ;
Zhou, Jingkai ;
Meier, Jonas .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :213-226