A data-centric approach for ethical and trustworthy AI in journalism

被引:0
|
作者
Dierickx, Laurence [1 ]
Opdahl, Andreas Lothe [1 ]
Khan, Sohail Ahmed [2 ]
Linden, Carl-Gustav [1 ]
Guerrero Rojas, Diana Carolina [3 ]
机构
[1] Univ Bergen, Dept Informat Sci & Media Studies, Bergen, Norway
[2] Media Futures, Bergen, Norway
[3] Senter Undersokende Journalistikk SUJO, Bergen, Norway
关键词
Data quality; Machine learning; Artificial intelligence; Ethics; Journalism; Trustworthiness; Framework; DATA QUALITY; BIG DATA; COMPUTATIONAL JOURNALISM; OBJECTIVITY; TRANSPARENCY; PERSPECTIVES; CREDIBILITY;
D O I
10.1007/s10676-024-09801-6
中图分类号
B82 [伦理学(道德学)];
学科分类号
摘要
AI-driven journalism refers to various methods and tools for gathering, verifying, producing, and distributing news information. Their potential is to extend human capabilities and create new forms of augmented journalism. Although scholars agreed on the necessity to embed journalistic values in these systems to make AI systems accountable, less attention was paid to data quality, while the results' accuracy and efficiency depend on high-quality data in any machine learning task. Assessing data quality in the context of AI-driven journalism requires a broader and interdisciplinary approach, relying on the challenges of data quality in machine learning and the ethical challenges of using machine learning in journalism. To better identify these, we propose a data quality assessment framework to support the collection and pre-processing stages in machine learning. It relies on three of the core principles of ethical journalism-accuracy, fairness, and transparency-and participates in the shift from model-centric to data-centric AI, by focusing on data quality to reduce reliance on large datasets with errors, making data labelling consistent, and better integrating journalistic knowledge.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Data-Centric Approach to Hepatitis C Virus Severity Prediction
    Sharma, Aniket
    Arora, Ashok
    Gupta, Anuj
    Singh, Pramod Kumar
    INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, ISDA 2021, 2022, 418 : 421 - 431
  • [22] Considerations for a More Ethical Approach to Data in AI: On Data Representation and Infrastructure
    Baird, Alice
    Schuller, Bjoern
    FRONTIERS IN BIG DATA, 2020, 3
  • [23] Data-centric science for materials innovation
    Tanaka, Isao
    Rajan, Krishna
    Wolverton, Christopher
    MRS BULLETIN, 2018, 43 (09) : 659 - 663
  • [24] From Concept to Implementation: The Data-Centric Development Process for AI in Industry
    Luley, Paul-Philipp
    Deriu, Jan M.
    Yan, Peng
    Schatte, Gerrit A.
    Stadelmann, Thilo
    2023 10TH IEEE SWISS CONFERENCE ON DATA SCIENCE, SDS, 2023, : 73 - 76
  • [25] Data-centric Edge-AI: A Symbolic Representation Use Case
    Ilager, Shashikant
    De Maio, Vincenzo
    Lujic, Ivan
    Brandic, Ivona
    2023 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING AND COMMUNICATIONS, EDGE, 2023, : 301 - 308
  • [26] Data-centric approach for miscellaneous optical sensing and imaging
    Tanida, Jun
    Horisaki, Ryoichi
    HOLOGRAPHY, DIFFRACTIVE OPTICS, AND APPLICATIONS IX, 2019, 11188
  • [27] Epidemic Forecasting with a Data-Centric Lens
    Rodriguez, Alexander
    Kamarthi, Harshavardhan
    Prakash, B. Aditya
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4822 - 4823
  • [28] Data-centric Artificial Intelligence: A Survey
    Zha, Daochen
    Bhat, Zaid Pervaiz
    Lai, Kwei-Herng
    Yang, Fan
    Jiang, Zhimeng
    Zhong, Shaochen
    Hu, Xia
    ACM COMPUTING SURVEYS, 2025, 57 (05)
  • [29] Shaping the Future of Healthcare: Ethical Clinical Challenges and Pathways to Trustworthy AI
    Goktas, Polat
    Grzybowski, Andrzej
    JOURNAL OF CLINICAL MEDICINE, 2025, 14 (05)
  • [30] Materials data science using CRADLE: A distributed, data-centric approach
    Ciardi, Thomas G.
    Nihar, Arafath
    Chawla, Rounak
    Akanbi, Olatunde
    Tripathi, Pawan K.
    Wu, Yinghui
    Chaudhary, Vipin
    French, Roger H.
    MRS COMMUNICATIONS, 2024, 14 (04) : 601 - 611