Analysis of a higher-order scheme for multi-term time-fractional integro-partial differential equations with multi-term weakly singular kernels

被引:2
作者
Santra, Sudarshan [1 ]
机构
[1] Indian Inst Sci, Dept Computat & Data Sci, Bangalore, India
关键词
Integro-partial differential equation; Volterra operator; Multi-term weakly singular kernels; Multi-term Caputo derivatives; Higher-order approximation; Hermite wavelet; Graded mesh; Error analysis; INTEGRODIFFERENTIAL EQUATION; DIFFUSION EQUATIONS; STABILITY;
D O I
10.1007/s11075-024-01927-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is focused on developing a hybrid numerical method that combines a higher-order finite difference method and multi-dimensional Hermite wavelets to address two-dimensional multi-term time-fractional integro-partial differential equations with multi-term weakly singular kernels having bounded and unbounded time derivatives at the initial time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document}. Specifically, the multi-term fractional operators are discretized using a higher-order approximation designed by employing different interpolation schemes based on linear, quadratic, and cubic interpolation leading to O(N-(4-alpha 1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-(4-\alpha _1)})$$\end{document} accuracy on a suitably chosen nonuniform mesh and O(N-alpha 1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-\alpha _1})$$\end{document} accuracy on a uniformly distributed mesh. The weakly singular integral operators are approximated by a modified numerical quadrature, which is a combination of the composite trapezoidal approximation and the midpoint rule. The effects of the exponents of the weakly singular kernels over fractional orders are analyzed in terms of accuracy over uniform and nonuniform meshes for the solution having both bounded and unbounded time derivatives. The stability of the proposed semi-discrete scheme is derived based on L infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>\infty $$\end{document}-norm for uniformly distributed temporal mesh. Further, we employ the uniformly distributed collocation points in spatial directions to estimate the tensor-based wavelet coefficients. Moreover, the convergence analysis of the fully discrete scheme is carried out based on L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-norm leading to O(N-alpha 1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-\alpha _1})$$\end{document} accuracy on a uniform mesh. It also highlights the higher-order accuracy over nonuniform mesh. Additionally, we discuss the convergence analysis of the proposed scheme in the context of the multi-term time-fractional diffusion equations involving time singularity demonstrating a O(N-(4-alpha 1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-(4-\alpha _1)})$$\end{document} accuracy on a nonuniform mesh with suitably chosen grading parameter. Note that the scheme reduces to O(N-alpha 1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-\alpha _1})$$\end{document} accuracy on a uniform mesh. Several tests are performed on numerous examples in L infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>\infty $$\end{document}- and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-norm to show the efficiency of the proposed method. Further, the solutions' nature and accuracy in terms of absolute point-wise error are illustrated through several isosurface plots for different regularities of the exact solution. These experiments confirm the theoretical accuracy and guarantee the convergence of approximations to the functions having time singularity, and the higher-order accuracy for a suitably chosen nonuniform mesh.
引用
收藏
页数:47
相关论文
共 50 条
  • [41] Finite difference schemes for the two-dimensional multi-term time-fractional diffusion equations with variable coefficients
    Cui, Mingrong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (05)
  • [42] Optimal error estimate of an accurate second-order scheme for Volterra integrodifferential equations with tempered multi-term kernels
    Qiu, Wenlin
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (03)
  • [43] A novel Jacobi operational matrix for numerical solution of multi-term variable-order fractional differential equations
    El-Sayed, A. A.
    Baleanu, D.
    Agarwal, P.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 963 - 974
  • [44] Optimal error estimate of an accurate second-order scheme for Volterra integrodifferential equations with tempered multi-term kernels
    Wenlin Qiu
    Advances in Computational Mathematics, 2023, 49
  • [45] Spatial High Accuracy Analysis of FEM for Two-dimensional Multi-term Time-fractional Diffusion-wave Equations
    Ya-bing Wei
    Yan-min Zhao
    Zheng-guang Shi
    Fen-ling Wang
    Yi-fa Tang
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 828 - 841
  • [46] Spatial High Accuracy Analysis of FEM for Two-dimensional Multi-term Time-fractional Diffusion-wave Equations
    Wei, Ya-bing
    Zhao, Yan-min
    Shi, Zheng-guang
    Wang, Fen-ling
    Tang, Yi-fa
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (04): : 828 - 841
  • [47] Analytical and numerical solution techniques for a class of time-fractional integro-partial differential equations
    Maji, Sandip
    Natesan, Srinivasan
    NUMERICAL ALGORITHMS, 2023, 94 (01) : 229 - 256
  • [48] Finite element multigrid method for multi-term time fractional advection diffusion equations
    Bu, Weiping
    Liu, Xiangtao
    Tang, Yifa
    Yang, Jiye
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2015, 6 (01)
  • [49] A general framework for the numerical analysis of high-order finite difference solvers for nonlinear multi-term time-space fractional partial differential equations with time delay
    Hendy, Ahmed S.
    Zaky, Mahmoud A.
    Staelen, Rob H. De
    APPLIED NUMERICAL MATHEMATICS, 2021, 169 : 108 - 121
  • [50] Nonuniform difference schemes for multi-term and distributed-order fractional parabolic equations with fractional Laplacian
    Fardi, M.
    Zaky, M. A.
    Hendy, A. S.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 206 : 614 - 635