Analysis of a higher-order scheme for multi-term time-fractional integro-partial differential equations with multi-term weakly singular kernels

被引:2
|
作者
Santra, Sudarshan [1 ]
机构
[1] Indian Inst Sci, Dept Computat & Data Sci, Bangalore, India
关键词
Integro-partial differential equation; Volterra operator; Multi-term weakly singular kernels; Multi-term Caputo derivatives; Higher-order approximation; Hermite wavelet; Graded mesh; Error analysis; INTEGRODIFFERENTIAL EQUATION; DIFFUSION EQUATIONS; STABILITY;
D O I
10.1007/s11075-024-01927-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is focused on developing a hybrid numerical method that combines a higher-order finite difference method and multi-dimensional Hermite wavelets to address two-dimensional multi-term time-fractional integro-partial differential equations with multi-term weakly singular kernels having bounded and unbounded time derivatives at the initial time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document}. Specifically, the multi-term fractional operators are discretized using a higher-order approximation designed by employing different interpolation schemes based on linear, quadratic, and cubic interpolation leading to O(N-(4-alpha 1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-(4-\alpha _1)})$$\end{document} accuracy on a suitably chosen nonuniform mesh and O(N-alpha 1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-\alpha _1})$$\end{document} accuracy on a uniformly distributed mesh. The weakly singular integral operators are approximated by a modified numerical quadrature, which is a combination of the composite trapezoidal approximation and the midpoint rule. The effects of the exponents of the weakly singular kernels over fractional orders are analyzed in terms of accuracy over uniform and nonuniform meshes for the solution having both bounded and unbounded time derivatives. The stability of the proposed semi-discrete scheme is derived based on L infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>\infty $$\end{document}-norm for uniformly distributed temporal mesh. Further, we employ the uniformly distributed collocation points in spatial directions to estimate the tensor-based wavelet coefficients. Moreover, the convergence analysis of the fully discrete scheme is carried out based on L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-norm leading to O(N-alpha 1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-\alpha _1})$$\end{document} accuracy on a uniform mesh. It also highlights the higher-order accuracy over nonuniform mesh. Additionally, we discuss the convergence analysis of the proposed scheme in the context of the multi-term time-fractional diffusion equations involving time singularity demonstrating a O(N-(4-alpha 1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-(4-\alpha _1)})$$\end{document} accuracy on a nonuniform mesh with suitably chosen grading parameter. Note that the scheme reduces to O(N-alpha 1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-\alpha _1})$$\end{document} accuracy on a uniform mesh. Several tests are performed on numerous examples in L infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>\infty $$\end{document}- and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-norm to show the efficiency of the proposed method. Further, the solutions' nature and accuracy in terms of absolute point-wise error are illustrated through several isosurface plots for different regularities of the exact solution. These experiments confirm the theoretical accuracy and guarantee the convergence of approximations to the functions having time singularity, and the higher-order accuracy for a suitably chosen nonuniform mesh.
引用
收藏
页数:47
相关论文
共 50 条
  • [31] A high-order compact difference scheme for the multi-term time-fractional Sobolev-type convection-diffusion equation
    Alikhanov, Anatoly A.
    Yadav, Poonam
    Singh, Vineet Kumar
    Asl, Mohammad Shahbazi
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01)
  • [32] Efficient numerical method for multi-term time-fractional diffusion equations with Caputo-Fabrizio derivatives
    Fan, Bin
    AIMS MATHEMATICS, 2024, 9 (03): : 7293 - 7320
  • [33] Analysis of a fast element-free Galerkin method for the multi-term time-fractional diffusion
    Hu, Zesen
    Li, Xiaolin
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 223 : 677 - 692
  • [34] The BDF2 FDM for the fourth-order equations with the multi-term R-L fractional integral kernels
    Liu, Yuan
    Zhang, Haixiang
    Yang, Xuehua
    Liu, Yanling
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (06) : 3042 - 3061
  • [35] ON THE S-ASYMPTOTICALLY ω-PERIODIC MILD SOLUTIONS FOR MULTI-TERM TIME FRACTIONAL MEASURE DIFFERENTIAL EQUATIONS
    Gou, Haide
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 62 (02) : 569 - 590
  • [36] Recovering the time-dependent potential function in a multi-term time-fractional diffusion equation
    Sun, Liangliang
    Zhang, Yun
    Wei, Ting
    APPLIED NUMERICAL MATHEMATICS, 2019, 135 : 228 - 245
  • [37] Numerical methods for solving the multi-term time-fractional wave-diffusion equation
    Liu, Fawang
    Meerschaert, Mark M.
    McGough, Robert J.
    Zhuang, Pinghui
    Liu, Qingxia
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) : 9 - 25
  • [38] Finite difference scheme for multi-term variable-order fractional diffusion equation
    Tao Xu
    Shujuan Lü
    Wenping Chen
    Hu Chen
    Advances in Difference Equations, 2018
  • [39] Finite difference scheme for multi-term variable-order fractional diffusion equation
    Xu, Tao
    Lu, Shujuan
    Chen, Wenping
    Chen, Hu
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [40] Spatial High Accuracy Analysis of FEM for Two-dimensional Multi-term Time-fractional Diffusion-wave Equations
    Ya-bing WEI
    Yan-min ZHAO
    Zheng-guang SHI
    Fen-ling WANG
    Yi-fa TANG
    Acta Mathematicae Applicatae Sinica, 2018, 34 (04) : 828 - 841