Amidoxime-grafted fluorinated graphene nanosheets as a trace electrochemical sensing platform of uranyl ion

被引:4
作者
Jiang, Cong [1 ]
Tang, Xian [2 ]
He, Bo [2 ]
Ouyang, Yanquan [2 ]
Xiang, Ruiyang [2 ]
Li, Le [1 ]
机构
[1] Univ South China, Sch Publ Hlth, Hengyang 421001, Peoples R China
[2] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China
基金
中国国家自然科学基金;
关键词
Uranyl ion; Specific recognition; Fluorinated graphene; Grafting; Amidoximation; Electrochemical sensing; DNAZYME; SENSOR; FLUOROGRAPHENE; URANIUM; FUNCTIONALIZATION; CHEMISTRY; COMPLEX; WATER; OXIDE;
D O I
10.1016/j.microc.2024.111371
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Current electrode recognition materials have limited the realization of rapid real-time monitoring of trace uranyl ion (UO22+) in real-world waters. Herein, amidoxime-grafted fluorinated graphene (AO-FG) is synthesized via the addition and subsequent amidoximation reactions of FG for the electrochemical determination of trace UO22+. Spectroscopies and microscopies reveal the synthetic and morphological characteristics of AO-FG. Electrochemical measurement indicates a significant improvement in the UO22+ redox activity of FG after amidoximation, which is attributed to the introduction of more UO22+ binding sites on the electrode surface and the restoration of charge transfer of graphene. By optimizing the modifier concentration, pH, temperature, and enrichment time, the linear range of the AO-FG-based electrochemical UO22+ sensor is determined to be 0.015-0.1 ppm (R2 = 0.9945), and the detection limit reaches 9.97 x 10-10 M. Furthermore, it exhibited excellent repeatability, air stability, and reliability in the detection of UO22+ in water samples. This study constitutes a novel pathway of constructing high-efficiency, low-cost, and portable UO22+ sensors via grafting of specific groups on FG substrates.
引用
收藏
页数:9
相关论文
共 58 条
[1]   Preparation and evaluation of new uranyl imprinted polymer electrode sensor for uranyl ion based on uranyl-carboxybezotriazole complex in pvc matrix membrane [J].
Abu-Dalo, Muna A. ;
Al-Rawashdeh, Nathir A. F. ;
Al-Mheidat, Ismaeel R. ;
Nassory, Nabil S. .
SENSORS AND ACTUATORS B-CHEMICAL, 2016, 227 :336-345
[2]   Chemical sensing with 2D materials [J].
Anichini, Cosimo ;
Czepa, Wlodzimierz ;
Pakulski, Dawid ;
Aliprandi, Alessandro ;
Ciesielski, Artur ;
Samori, Paolo .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (13) :4860-4908
[3]   Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene [J].
Bakandritsos, Aristides ;
Pykal, Martin ;
Blonski, Piotr ;
Jakubec, Petr ;
Chronopoulos, Demetrios D. ;
Polakova, Katerina ;
Georgakilas, Vasilios ;
Cepe, Klara ;
Tomanec, Ondrej ;
Ranc, Vaclav ;
Bourlinos, Athanasios B. ;
Zboril, Radek ;
Otyepka, Michal .
ACS NANO, 2017, 11 (03) :2982-2991
[4]   Electrochemical Fluorination and Radiofluorination of Methyl(phenylthio) acetate Using Tetrabutylammonium Fluoride (TBAF) [J].
Balandeh, Mehrdad ;
Waldmann, Christopher ;
Shirazi, Daniela ;
Gomez, Adrian ;
Rios, Alejandra ;
Allison, Nathanael ;
Khan, Asad ;
Sadeghi, Saman .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (09) :G99-G103
[5]   Bimodal role of fluorine atoms in fluorographene chemistry opens a simple way toward double functionalization of graphene [J].
Bares, Hugo ;
Bakandritsos, Aristides ;
Medved, Miroslav ;
Ugolotti, Juri ;
Jakubec, Petr ;
Tomanec, Ondrej ;
Kalytchuk, Sergii ;
Zboril, Radek ;
Otyepka, Michal .
CARBON, 2019, 145 :251-258
[6]   Selective and Sensitive Determination of Uranyl Ions in Complex Matrices by Ion Imprinted Polymers-Based Electrochemical Sensor [J].
Bojdi, Majid Kalate ;
Behbahani, Mohammad ;
Najafi, Mostafa ;
Bagheri, Akbar ;
Omidi, Fariborz ;
Salimi, Sara .
ELECTROANALYSIS, 2015, 27 (10) :2458-2467
[7]   Amplified electrochemical determination of UO22+ based on the cleavage of the DNAzyme and DNA-modified gold nanoparticle network structure [J].
Cao, Chen ;
Liu, Jinquan ;
Tang, Shuangyang ;
Dai, Zhongran ;
Xiao, Fubing ;
Rang, Weiqing ;
Liu, Ling ;
Chen, Tuo ;
Yuan, Yali ;
Li, Le .
MICROCHIMICA ACTA, 2020, 187 (05)
[8]   The Surface Energy of Hydrogenated and Fluorinated Graphene [J].
Carpenter, James ;
Kim, Hyunchul ;
Suarez, Jules ;
van der Zande, Arend ;
Miljkovic, Nenad .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (01) :2429-2436
[9]   Recent Advances in Fluorinated Graphene from Synthesis to Applications: Critical Review on Functional Chemistry and Structure Engineering [J].
Chen, Xinyu ;
Fan, Kun ;
Liu, Yang ;
Li, Yu ;
Liu, Xiangyang ;
Feng, Wei ;
Wang, Xu .
ADVANCED MATERIALS, 2022, 34 (01)
[10]   Reversible fluorination of graphene: Evidence of a two-dimensional wide bandgap semiconductor [J].
Cheng, S. -H. ;
Zou, K. ;
Okino, F. ;
Gutierrez, H. R. ;
Gupta, A. ;
Shen, N. ;
Eklund, P. C. ;
Sofo, J. O. ;
Zhu, J. .
PHYSICAL REVIEW B, 2010, 81 (20)