Ultrathin Hexagonal Boron Nitride Coatings for Enhanced Condensation Heat Transfer

被引:1
作者
He, Yanshuang [1 ]
Li, Jidong [3 ,4 ]
Wang, Xiao [1 ]
Shan, Yubin [1 ]
Yin, Jingjing [2 ]
Yin, Jun [1 ,3 ,4 ]
Li, Xuemei [3 ,4 ,5 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, Nanjing 210016, Peoples R China
[2] Nanjing Univ, Affiliated Jinling Hosp, Med Sch, Nanjing 210016, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Minist Educ, State Key Lab Mech & Control Aerosp Struct, Key Lab Intelligent Nano Mat & Devices, Nanjing 210016, Peoples R China
[4] Nanjing Univ Aeronaut & Astronaut, Inst Frontier Sci, Nanjing 210016, Peoples R China
[5] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Engn, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
condensation; hexagonal boron nitride; dropwise; robust; heat transfer; DROPWISE CONDENSATION; SURFACE; WATER;
D O I
10.1021/acsanm.4c03184
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Dropwise condensation on hydrophobic surfaces, compared to filmwise condensation on hydrophilic surfaces, is considered to be an effective means to enhance heat transfer. However, the development of technologies for promoting dropwise condensation using hydrophobic coatings has remained challenging due to the potential trade-off between enhanced hydrophobicity and increased thermal resistance associated with thicker coatings. In this study, we reported the realization of enhanced condensation heat transfer with ultrathin chemical vapor deposition of hexagonal boron nitride coatings, while maintaining robust dropwise condensation with over 120 h. Our experimental results demonstrate a 4.6-fold improvement in the heat transfer coefficient compared with filmwise condensation on bare substrates. These findings suggest that hexagonal boron nitride holds promise as a surface coating for promoting dropwise condensation of water vapor, potentially impacting various fields that rely on efficient heat transfer processes.
引用
收藏
页码:19305 / 19310
页数:6
相关论文
共 44 条
[1]   Mechanical testing of two-dimensional materials: a brief review [J].
Al-Quraishi, Karrar K. ;
He, Qing ;
Kauppila, Wesley ;
Wang, Min ;
Yang, Yingchao .
INTERNATIONAL JOURNAL OF SMART AND NANO MATERIALS, 2020, 11 (03) :207-246
[2]  
Amir Vosough., 2011, INT J MULTIDISCIPLIN, V02, P38
[3]   Surface engineering for phase change heat transfer: A review [J].
Attinger D. ;
Frankiewicz C. ;
Betz A.R. ;
Schutzius T.M. ;
Ganguly R. ;
Das A. ;
Kim C.-J. ;
Megaridis C.M. .
MRS Energy and Sustainability, 2014, 1 (01)
[4]   HEAT TRANSFER FROM SUPERHEATED VAPORS TO A HORIZONTAL TUBE [J].
BALEKJIAN, G ;
KATZ, DL .
AICHE JOURNAL, 1958, 4 (01) :43-48
[5]   Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture [J].
Bejan, A .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2002, 26 (07) :545-565
[6]  
Blank M., 1979, J COLLOID INTERFACES, V72, P367, DOI [10.1016/0021-9797(79)90124-3, DOI 10.1016/0021-9797(79)90124-3]
[7]   A review of heat transfer physics [J].
Carey, V. P. ;
Chen, G. ;
Grigoropoulos, C. ;
Kaviany, M. ;
Majumdar, A. .
NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2008, 12 (01) :1-60
[8]  
Carey V. P., 2008, LIQUID VAPOR PHASE C
[9]   Hexagonal boron nitride is an indirect bandgap semiconductor [J].
Cassabois, G. ;
Valvin, P. ;
Gil, B. .
NATURE PHOTONICS, 2016, 10 (04) :262-+
[10]   Nanoengineered materials for liquid-vapour phase-change heat transfer [J].
Cho, H. Jeremy ;
Preston, Daniel J. ;
Zhu, Yangying ;
Wang, Evelyn N. .
NATURE REVIEWS MATERIALS, 2017, 2 (02)