Trident edge coupler on thin-film lithium niobate for optimized coupling of octave-separated wavelengths for nonlinear applications

被引:0
作者
Gerguis, John o. [1 ]
Chang, Gregory [1 ]
Qi, Minghao [1 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
来源
OPTICS CONTINUUM | 2024年 / 3卷 / 07期
基金
美国国家科学基金会;
关键词
WAVE; GENERATION;
D O I
10.1364/OPTCON.518712
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a trident edge coupler design optimized for the simultaneous coupling of two widely separated wavelengths (2 mu m and 1 mu m) between a lensed fiber and a 600-nmthick X-cut lithium-niobate-on-insulator (LNOI) waveguide. These wavelengths are commonly encountered in nonlinear wave mixing applications, representing either the fundamental and second harmonics in second harmonic generation (SHG) processes or the leading and trailing edges of an octave-spanning spectrum generated through broadband nonlinear processes such as frequency comb or supercontinuum generation. Achieving efficient coupling between fibers and strongly confined waveguides in integrated platforms, such as LNOI, can be challenging due to the significant difference in spot sizes between the two wavelengths. Our trident edge coupler offers coupling losses below 1.4 dB for the 2 mu m and 1 mu m spots simultaneously, showcasing an average transmission enhancement of around 10% compared to the baseline of a single linear taper. Furthermore, it enables a reduction of transmission at 1.5 mu m, a typical pump wavelength, with an attenuation of transmission over 10 dB compared to those at the 2 mu m and 1 mu m wavelengths.
引用
收藏
页码:1116 / 1131
页数:16
相关论文
共 29 条
[1]   Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues [J].
Cheng, Lirong ;
Mao, Simei ;
Li, Zhi ;
Han, Yaqi ;
Fu, H. .
MICROMACHINES, 2020, 11 (07)
[2]   Optical frequency comb generation from a monolithic microresonator [J].
Del'Haye, P. ;
Schliesser, A. ;
Arcizet, O. ;
Wilken, T. ;
Holzwarth, R. ;
Kippenberg, T. J. .
NATURE, 2007, 450 (7173) :1214-1217
[3]   On-chip complex refractive index detection at multiple wavelengths for selective sensing [J].
El Shamy, Raghi S. ;
Swillam, Mohamed A. ;
Li, Xun .
SCIENTIFIC REPORTS, 2022, 12 (01)
[4]   Mid Infrared Optical Gas Sensor Using Plasmonic Mach-Zehnder Interferometer [J].
El Shamy, Raghi S. ;
Khalil, Diaa ;
Swillam, Mohamed A. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[5]   Parallel convolutional processing using an integrated photonic tensor core [J].
Feldmann, J. ;
Youngblood, N. ;
Karpov, M. ;
Gehring, H. ;
Li, X. ;
Stappers, M. ;
Le Gallo, M. ;
Fu, X. ;
Lukashchuk, A. ;
Raja, A. S. ;
Liu, J. ;
Wright, C. D. ;
Sebastian, A. ;
Kippenberg, T. J. ;
Pernice, W. H. P. ;
Bhaskaran, H. .
NATURE, 2021, 589 (7840) :52-+
[6]  
Gerguis J. O., 2023, CLEO 2023, P32
[7]   Garbled EDA: Privacy Preserving Electronic Design Automation [J].
Hashemi, Mohammad ;
Roy, Steffi ;
Ganji, Fatemeh ;
Forte, Domenic .
2022 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2022,
[8]   Ultracompact Fiber-to-Chip Metamaterial Edge Coupler [J].
He, An ;
Guo, Xuhan ;
Wang, Ting ;
Su, Yikai .
ACS PHOTONICS, 2021, 8 (11) :3226-3233
[9]   Compact solid-state optical phased array beam scanners based on polymeric photonic integrated circuits [J].
Kim, Sung-Moon ;
Lee, Eun-Su ;
Chun, Kwon-Wook ;
Jin, Jinung ;
Oh, Min-Cheol .
SCIENTIFIC REPORTS, 2021, 11 (01)
[10]   Fabrication of single-crystal lithium niobate films by crystal ion slicing [J].
Levy, M ;
Osgood, RM ;
Liu, R ;
Cross, LE ;
Cargill, GS ;
Kumar, A ;
Bakhru, H .
APPLIED PHYSICS LETTERS, 1998, 73 (16) :2293-2295