Interactive Multi-interest Process Pattern Discovery

被引:3
|
作者
Vazifehdoostirani, Mozhgan [1 ]
Genga, Laura [1 ]
Lu, Xixi [2 ]
Verhoeven, Rob [3 ,4 ,5 ]
van Laarhoven, Hanneke [4 ,5 ]
Dijkman, Remco [1 ]
机构
[1] Eindhoven Univ Technol, Eindhoven, Netherlands
[2] Univ Utrecht, Utrecht, Netherlands
[3] Netherlands Comprehens Canc Org IKNL, Utrecht, Netherlands
[4] Univ Amsterdam, Amsterdam UMC Locat, Amsterdam, Netherlands
[5] Canc Treatment & Qual Life, Canc Ctr Amsterdam, Amsterdam, Netherlands
来源
BUSINESS PROCESS MANAGEMENT, BPM 2023 | 2023年 / 14159卷
关键词
Process Pattern Discovery; Multi-interest Pattern Detection; Process Mining; Outcome-Oriented Process Patterns;
D O I
10.1007/978-3-031-41620-0_18
中图分类号
F [经济];
学科分类号
02 ;
摘要
Process pattern discovery methods (PPDMs) aim at identifying patterns of interest to users. Existing PPDMs typically are unsupervised and focus on a single dimension of interest, such as discovering frequent patterns. We present an interactive multi-interest-driven framework for process pattern discovery aimed at identifying patterns that are optimal according to a multi-dimensional analysis goal. The proposed approach is iterative and interactive, thus taking experts' knowledge into account during the discovery process. The paper focuses on a concrete analysis goal, i.e., deriving process patterns that affect the process outcome. We evaluate the approach on real-world event logs in both interactive and fully automated settings. The approach extracted meaningful patterns validated by expert knowledge in the interactive setting. Patterns extracted in the automated settings consistently led to prediction performance comparable to or better than patterns derived considering single-interest dimensions without requiring user-defined thresholds.
引用
收藏
页码:303 / 319
页数:17
相关论文
共 50 条
  • [21] SAMPLING SIMULATION IN PROCESS DISCOVERY
    Prasetyo, H. N.
    Sarno, R.
    Wijaya, D. R.
    Budiraharjo, R.
    Waspada, I.
    INTERNATIONAL JOURNAL OF SIMULATION MODELLING, 2023, 22 (01) : 17 - 28
  • [22] Subgroup Discovery in Process Mining
    Sani, Mohammadreza Fani
    van der Aalst, Wil
    Bolt, Alfredo
    Garcia-Algarra, Javier
    BUSINESS INFORMATION SYSTEMS (BIS 2017), 2017, 288 : 237 - 252
  • [23] Enabling Interactive Process Analysis with Process Mining and Visual Analytics
    Dixit, P. M.
    Caballero, H. S. Garcia
    Corvo, A.
    Hompes, B. F. A.
    Buijs, J. C. A. M.
    van der Aalst, W. M. P.
    PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 5: HEALTHINF, 2017, : 573 - 584
  • [24] Interactive Process Improvement Using Simulation of Enriched Process Trees
    Pourbafrani, Mahsa
    van der Aalst, Wil M. P.
    SERVICE-ORIENTED COMPUTING, ICSOC 2021 WORKSHOPS, 2022, 13236 : 61 - 76
  • [25] Process Mining: Realization and Optimization of Process Discovery Algorithm
    Savin, G. I.
    Chopornyak, A. D.
    Rybakov, A. A.
    Shumilin, S. S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (12) : 2566 - 2574
  • [26] Process Mining: Realization and Optimization of Process Discovery Algorithm
    G. I. Savin
    A. D. Chopornyak
    A. A. Rybakov
    S. S. Shumilin
    Lobachevskii Journal of Mathematics, 2020, 41 : 2566 - 2574
  • [27] Sub-process Discovery: Opportunities for Process Diagnostics
    Yzquierdo-Herrera, Raykenler
    Silverio-Castro, Rogelio
    Lazo-Cortes, Manuel
    ENTERPRISE INFORMATION SYSTEMS OF THE FUTURE, 2013, 139 : 48 - 57
  • [28] How Can Interactive Process Discovery Address Data Quality Issues in Real Business Settings? Evidence from a Case Study in Healthcare
    Benevento, Elisabetta
    Aloini, Davide
    van der Aalst, Wil M. P.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2022, 130
  • [29] Process Discovery Techniques Recommendation Framework
    Al-Absi, Mohammed Abdulhakim
    R'bigui, Hind
    ELECTRONICS, 2023, 12 (14)
  • [30] Holistic Approach for Process Model Discovery
    Repta, Dragos
    Stanescu, Aurelian Mihai
    2017 21ST INTERNATIONAL CONFERENCE ON CONTROL SYSTEMS AND COMPUTER SCIENCE (CSCS), 2017, : 471 - 476