Interactive Multi-interest Process Pattern Discovery

被引:3
|
作者
Vazifehdoostirani, Mozhgan [1 ]
Genga, Laura [1 ]
Lu, Xixi [2 ]
Verhoeven, Rob [3 ,4 ,5 ]
van Laarhoven, Hanneke [4 ,5 ]
Dijkman, Remco [1 ]
机构
[1] Eindhoven Univ Technol, Eindhoven, Netherlands
[2] Univ Utrecht, Utrecht, Netherlands
[3] Netherlands Comprehens Canc Org IKNL, Utrecht, Netherlands
[4] Univ Amsterdam, Amsterdam UMC Locat, Amsterdam, Netherlands
[5] Canc Treatment & Qual Life, Canc Ctr Amsterdam, Amsterdam, Netherlands
来源
BUSINESS PROCESS MANAGEMENT, BPM 2023 | 2023年 / 14159卷
关键词
Process Pattern Discovery; Multi-interest Pattern Detection; Process Mining; Outcome-Oriented Process Patterns;
D O I
10.1007/978-3-031-41620-0_18
中图分类号
F [经济];
学科分类号
02 ;
摘要
Process pattern discovery methods (PPDMs) aim at identifying patterns of interest to users. Existing PPDMs typically are unsupervised and focus on a single dimension of interest, such as discovering frequent patterns. We present an interactive multi-interest-driven framework for process pattern discovery aimed at identifying patterns that are optimal according to a multi-dimensional analysis goal. The proposed approach is iterative and interactive, thus taking experts' knowledge into account during the discovery process. The paper focuses on a concrete analysis goal, i.e., deriving process patterns that affect the process outcome. We evaluate the approach on real-world event logs in both interactive and fully automated settings. The approach extracted meaningful patterns validated by expert knowledge in the interactive setting. Patterns extracted in the automated settings consistently led to prediction performance comparable to or better than patterns derived considering single-interest dimensions without requiring user-defined thresholds.
引用
收藏
页码:303 / 319
页数:17
相关论文
共 50 条
  • [1] Enhancing medical evidence discovery through Interactive Pattern Recognition and Process Mining
    Traver, V.
    Martinez-Romero, A.
    Bayo, J. L.
    Sala, P.
    Carvalho, P.
    Henriques, J.
    Ruano, M. G.
    Bianchi, A.
    Fernandez-Llatas, C.
    2016 GLOBAL MEDICAL ENGINEERING PHYSICS EXCHANGES/PAN AMERICAN HEALTH CARE EXCHANGES (GMEPE/PAHCE), 2016,
  • [2] Cortado: A dedicated process mining tool for interactive process discovery
    Schuster, Daniel
    van Zelst, Sebastiaan J.
    van der Aalst, Wil M. P.
    SOFTWAREX, 2023, 22
  • [3] Fast Incremental Conformance Analysis for Interactive Process Discovery
    Dixit, P. M.
    Buijs, J. C. A. M.
    Verbeek, H. M. W.
    van der Aalst, W. M. P.
    BUSINESS INFORMATION SYSTEMS (BIS 2018), 2018, 320 : 163 - 175
  • [4] Experimenting with an OLAP Approach for Interactive Discovery in Process Mining
    Pizarro, Gustavo
    Sepulveda, Marcos
    BUSINESS PROCESS MANAGEMENT WORKSHOPS( BPM 2014), 2015, 202 : 317 - 329
  • [5] Evaluating the Effectiveness of Interactive Process Discovery in Healthcare: A Case Study
    Benevento, Elisabetta
    Dixit, Prabhakar M.
    Sani, M. F.
    Aloini, Davide
    van der Aalst, Wil M. P.
    BUSINESS PROCESS MANAGEMENT WORKSHOPS (BPM 2019), 2019, 362 : 508 - 519
  • [6] Guided Process Discovery - A pattern-based approach
    Mannhardt, Felix
    de Leoni, Massimiliano
    Reijers, Hajo A.
    van der Aalst, Wil M. P.
    Toussaint, Pieter J.
    INFORMATION SYSTEMS, 2018, 76 : 1 - 18
  • [7] Process Simulation and Pattern Discovery through Alpha and Heuristic Algorithms
    Premchaiswadi, Wichian
    Porouhan, Parham
    2015 13TH INTERNATIONAL CONFERENCE ON ICT AND KNOWLEDGE ENGINEERING (ICT & KNOWLEDGE ENGINEERING 2015), 2015, : 60 - 66
  • [8] Discovery of Multi-perspective Declarative Process Models
    Schoenig, Stefan
    Di Ciccio, Claudio
    Maggi, Fabrizio M.
    Mendling, Jan
    SERVICE-ORIENTED COMPUTING, (ICSOC 2016), 2016, 9936 : 87 - 103
  • [9] Enabling Multi-process Discovery on Graph Databases
    Eldin, Ali Nour
    Assy, Nour
    Kobeissi, Meriana
    Baudot, Jonathan
    Gaaloul, Walid
    COOPERATIVE INFORMATION SYSTEMS (COOPIS 2022), 2022, 13591 : 112 - 130
  • [10] Cortado-An Interactive Tool for Data-Driven Process Discovery and Modeling
    Schuster, Daniel
    van Zelst, Sebastiaan J.
    van der Aalst, Wil M. P.
    APPLICATION AND THEORY OF PETRI NETS AND CONCURRENCY (PETRI NETS 2021), 2021, 12734 : 465 - 475