Deep Learning-Based Localization and Detection of Malpositioned Nasogastric Tubes on Portable Supine Chest X-Rays in Intensive Care and Emergency Medicine: A Multi-center Retrospective Study

被引:1
作者
Wang, Chih-Hung [1 ,2 ]
Hwang, Tianyu [3 ]
Huang, Yu-Sen [4 ]
Tay, Joyce [2 ]
Wu, Cheng-Yi [2 ]
Wu, Meng-Che [2 ]
Roth, Holger R. [5 ]
Yang, Dong [5 ]
Zhao, Can [5 ]
Wang, Weichung [6 ]
Huang, Chien-Hua [1 ,2 ]
机构
[1] Natl Taiwan Univ, Coll Med, Dept Emergency Med, Taipei, Taiwan
[2] Natl Taiwan Univ Hosp, Dept Emergency Med, 7 Zhung Zhan S Rd, Taipei City 100, Taiwan
[3] Natl Taiwan Univ, Natl Ctr Theoret Sci, Math Div, Taipei, Taiwan
[4] Natl Taiwan Univ Hosp, Dept Med Imaging, Taipei, Taiwan
[5] NVIDIA Corp, Bethesda, MD 20814 USA
[6] Natl Taiwan Univ, Inst Appl Math Sci, 1 Sec 4,Roosevelt Rd, Taipei 106, Taiwan
来源
JOURNAL OF IMAGING INFORMATICS IN MEDICINE | 2025年 / 38卷 / 01期
关键词
Artificial intelligence; Chest radiograph; Chest X-ray; Deep learning; Malposition; Misplacement; Nasogastric tube; RADIOGRAPHS; DIAGNOSIS; CURVES;
D O I
10.1007/s10278-024-01181-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Malposition of a nasogastric tube (NGT) can lead to severe complications. We aimed to develop a computer-aided detection (CAD) system to localize NGTs and detect NGT malposition on portable chest X-rays (CXRs). A total of 7378 portable CXRs were retrospectively retrieved from two hospitals between 2015 and 2020. All CXRs were annotated with pixel-level labels for NGT localization and image-level labels for NGT presence and malposition. In the CAD system, DeepLabv3 + with backbone ResNeSt50 and DenseNet121 served as the model architecture for segmentation and classification models, respectively. The CAD system was tested on images from chronologically different datasets (National Taiwan University Hospital (National Taiwan University Hospital)-20), geographically different datasets (National Taiwan University Hospital-Yunlin Branch (YB)), and the public CLiP dataset. For the segmentation model, the Dice coefficients indicated accurate delineation of the NGT course (National Taiwan University Hospital-20: 0.665, 95% confidence interval (CI) 0.630-0.696; National Taiwan University Hospital-Yunlin Branch: 0.646, 95% CI 0.614-0.678). The distance between the predicted and ground-truth NGT tips suggested accurate tip localization (National Taiwan University Hospital-20: 1.64 cm, 95% CI 0.99-2.41; National Taiwan University Hospital-Yunlin Branch: 2.83 cm, 95% CI 1.94-3.76). For the classification model, NGT presence was detected with high accuracy (area under the receiver operating characteristic curve (AUC): National Taiwan University Hospital-20: 0.998, 95% CI 0.995-1.000; National Taiwan University Hospital-Yunlin Branch: 0.998, 95% CI 0.995-1.000; CLiP dataset: 0.991, 95% CI 0.990-0.992). The CAD system also detected NGT malposition with high accuracy (AUC: National Taiwan University Hospital-20: 0.964, 95% CI 0.917-1.000; National Taiwan University Hospital-Yunlin Branch: 0.991, 95% CI 0.970-1.000) and detected abnormal nasoenteric tube positions with favorable performance (AUC: 0.839, 95% CI 0.807-0.869). The CAD system accurately localized NGTs and detected NGT malposition, demonstrating excellent potential for external generalizability.
引用
收藏
页码:335 / 345
页数:11
相关论文
共 45 条
[31]   CLiP, catheter and line position dataset [J].
Tang, Jennifer S. N. ;
Seah, Jarrel C. Y. ;
Zia, Adil ;
Gajera, Jay ;
Schlegel, Richard N. ;
Wong, Aaron J. N. ;
Gai, Dayu ;
Su, Shu ;
Bose, Tony ;
Kok, Marcus L. ;
Jarema, Alex ;
Harisis, George N. ;
Cheng, Chris-Tin ;
Kavnoudias, Helen ;
Wang, Wayland ;
Stein, Anouk ;
Shih, George ;
Gaillard, Frank ;
Dixon, Andrew ;
Law, Meng .
SCIENTIFIC DATA, 2021, 8 (01)
[32]   Factors associated with insufficient nasogastric tube visibility on X-ray: a retrospective analysis [J].
Torsy, Tim ;
Saman, Renee ;
Boeykens, Kurt ;
Eriksson, Mats ;
Verhaeghe, Sofie ;
Beeckman, Dimitri .
EUROPEAN RADIOLOGY, 2021, 31 (04) :2444-2450
[33]   Comparison of Two Methods for Estimating the Tip Position of a Nasogastric Feeding Tube: A Randomized Controlled Trial [J].
Torsy, Tim ;
Saman, Renee ;
Boeykens, Kurt ;
Duysburgh, Ivo ;
Van Damme, Nele ;
Beeckman, Dimitri .
NUTRITION IN CLINICAL PRACTICE, 2018, 33 (06) :843-850
[34]   Focal Loss for Dense Object Detection [J].
Lin, Tsung-Yi ;
Goyal, Priya ;
Girshick, Ross ;
He, Kaiming ;
Dollar, Piotr .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2999-3007
[35]   SciPy 1.0: fundamental algorithms for scientific computing in Python']Python [J].
Virtanen, Pauli ;
Gommers, Ralf ;
Oliphant, Travis E. ;
Haberland, Matt ;
Reddy, Tyler ;
Cournapeau, David ;
Burovski, Evgeni ;
Peterson, Pearu ;
Weckesser, Warren ;
Bright, Jonathan ;
van der Walt, Stefan J. ;
Brett, Matthew ;
Wilson, Joshua ;
Millman, K. Jarrod ;
Mayorov, Nikolay ;
Nelson, Andrew R. J. ;
Jones, Eric ;
Kern, Robert ;
Larson, Eric ;
Carey, C. J. ;
Polat, Ilhan ;
Feng, Yu ;
Moore, Eric W. ;
VanderPlas, Jake ;
Laxalde, Denis ;
Perktold, Josef ;
Cimrman, Robert ;
Henriksen, Ian ;
Quintero, E. A. ;
Harris, Charles R. ;
Archibald, Anne M. ;
Ribeiro, Antonio H. ;
Pedregosa, Fabian ;
van Mulbregt, Paul .
NATURE METHODS, 2020, 17 (03) :261-272
[36]   Deep Learning-based Diagnosis of Pulmonary Tuberculosis on Chest X-ray in the Emergency Department: A Retrospective Study [J].
Wang, Chih-Hung ;
Chang, Weishan ;
Lee, Meng-Rui ;
Tay, Joyce ;
Wu, Cheng-Yi ;
Wu, Meng-Che ;
Roth, Holger R. ;
Yang, Dong ;
Zhao, Can ;
Wang, Weichung ;
Huang, Chien-Hua .
JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (02) :589-600
[37]   Deep Learning-Based Localization and Detection of Malpositioned Endotracheal Tube on Portable Supine Chest Radiographs in Intensive and Emergency Medicine: A Multicenter Retrospective Study [J].
Wang, Chih-Hung ;
Hwang, Tianyu ;
Huang, Yu-Sen ;
Tay, Joyce ;
Wu, Cheng-Yi ;
Wu, Meng-Che ;
Roth, Holger R. ;
Yang, Dong ;
Zhao, Can ;
Wang, Weichung ;
Huang, Chien-Hua .
CRITICAL CARE MEDICINE, 2024, 52 (02) :237-247
[38]   Deep Learning-based Diagnosis and Localization of Pneumothorax on Portable Supine Chest X-ray in Intensive and Emergency Medicine: A Retrospective Study [J].
Wang, Chih-Hung ;
Lin, Tzuching ;
Chen, Guanru ;
Lee, Meng-Rui ;
Tay, Joyce ;
Wu, Cheng-Yi ;
Wu, Meng-Che ;
Roth, Holger R. ;
Yang, Dong ;
Zhao, Can ;
Wang, Weichung ;
Huang, Chien-Hua .
JOURNAL OF MEDICAL SYSTEMS, 2023, 48 (01)
[39]   ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases [J].
Wang, Xiaosong ;
Peng, Yifan ;
Lu, Le ;
Lu, Zhiyong ;
Bagheri, Mohammadhadi ;
Summers, Ronald M. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :3462-3471
[40]   Computer-aided Assessment of Catheters and Tubes on Radiographs: How Good Is Artificial Intelligence for Assessment? [J].
Yi, Xin ;
Adams, Scott J. ;
Henderson, Robert D. E. ;
Babyn, Paul .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (01)