Deep Learning-Based Localization and Detection of Malpositioned Nasogastric Tubes on Portable Supine Chest X-Rays in Intensive Care and Emergency Medicine: A Multi-center Retrospective Study

被引:0
作者
Wang, Chih-Hung [1 ,2 ]
Hwang, Tianyu [3 ]
Huang, Yu-Sen [4 ]
Tay, Joyce [2 ]
Wu, Cheng-Yi [2 ]
Wu, Meng-Che [2 ]
Roth, Holger R. [5 ]
Yang, Dong [5 ]
Zhao, Can [5 ]
Wang, Weichung [6 ]
Huang, Chien-Hua [1 ,2 ]
机构
[1] Natl Taiwan Univ, Coll Med, Dept Emergency Med, Taipei, Taiwan
[2] Natl Taiwan Univ Hosp, Dept Emergency Med, 7 Zhung Zhan S Rd, Taipei City 100, Taiwan
[3] Natl Taiwan Univ, Natl Ctr Theoret Sci, Math Div, Taipei, Taiwan
[4] Natl Taiwan Univ Hosp, Dept Med Imaging, Taipei, Taiwan
[5] NVIDIA Corp, Bethesda, MD 20814 USA
[6] Natl Taiwan Univ, Inst Appl Math Sci, 1 Sec 4,Roosevelt Rd, Taipei 106, Taiwan
来源
JOURNAL OF IMAGING INFORMATICS IN MEDICINE | 2025年 / 38卷 / 01期
关键词
Artificial intelligence; Chest radiograph; Chest X-ray; Deep learning; Malposition; Misplacement; Nasogastric tube; RADIOGRAPHS; DIAGNOSIS; CURVES;
D O I
10.1007/s10278-024-01181-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Malposition of a nasogastric tube (NGT) can lead to severe complications. We aimed to develop a computer-aided detection (CAD) system to localize NGTs and detect NGT malposition on portable chest X-rays (CXRs). A total of 7378 portable CXRs were retrospectively retrieved from two hospitals between 2015 and 2020. All CXRs were annotated with pixel-level labels for NGT localization and image-level labels for NGT presence and malposition. In the CAD system, DeepLabv3 + with backbone ResNeSt50 and DenseNet121 served as the model architecture for segmentation and classification models, respectively. The CAD system was tested on images from chronologically different datasets (National Taiwan University Hospital (National Taiwan University Hospital)-20), geographically different datasets (National Taiwan University Hospital-Yunlin Branch (YB)), and the public CLiP dataset. For the segmentation model, the Dice coefficients indicated accurate delineation of the NGT course (National Taiwan University Hospital-20: 0.665, 95% confidence interval (CI) 0.630-0.696; National Taiwan University Hospital-Yunlin Branch: 0.646, 95% CI 0.614-0.678). The distance between the predicted and ground-truth NGT tips suggested accurate tip localization (National Taiwan University Hospital-20: 1.64 cm, 95% CI 0.99-2.41; National Taiwan University Hospital-Yunlin Branch: 2.83 cm, 95% CI 1.94-3.76). For the classification model, NGT presence was detected with high accuracy (area under the receiver operating characteristic curve (AUC): National Taiwan University Hospital-20: 0.998, 95% CI 0.995-1.000; National Taiwan University Hospital-Yunlin Branch: 0.998, 95% CI 0.995-1.000; CLiP dataset: 0.991, 95% CI 0.990-0.992). The CAD system also detected NGT malposition with high accuracy (AUC: National Taiwan University Hospital-20: 0.964, 95% CI 0.917-1.000; National Taiwan University Hospital-Yunlin Branch: 0.991, 95% CI 0.970-1.000) and detected abnormal nasoenteric tube positions with favorable performance (AUC: 0.839, 95% CI 0.807-0.869). The CAD system accurately localized NGTs and detected NGT malposition, demonstrating excellent potential for external generalizability.
引用
收藏
页码:335 / 345
页数:11
相关论文
共 45 条
  • [1] Alert NPS, 2011, REDUCING HARM CAUSED
  • [2] ACR Appropriateness Criteria Routine Chest Radiographs in Intensive Care Unit Patients
    Amorosa, Judith K.
    Bramwit, Mark Paul
    Mohammed, Tan-Lucien H.
    Reddy, Gautham P.
    Brown, Kathleen
    Dyer, Debra Sue
    Ginsburg, Mark E.
    Heitkamp, Darel E.
    Jeudy, Jean
    Kirsch, Jacobo
    MacMahon, Heber
    Ravenel, James G.
    Saleh, Anthony G.
    Shah, Rakesh D.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2013, 10 (03) : 170 - 174
  • [3] Brunelli Roberto, 2009, Template matching techniques in computer vision: theory and practice
  • [4] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [5] Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1136/bmj.g7594, 10.7326/M14-0697, 10.1016/j.eururo.2014.11.025, 10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0698, 10.1002/bjs.9736, 10.1038/bjc.2014.639, 10.1186/s12916-014-0241-z]
  • [6] Coombes Rebecca, 2005, BMJ, V330, P438, DOI 10.1136/bmj.330.7489.438
  • [7] USE OF HOUGH TRANSFORMATION TO DETECT LINES AND CURVES IN PICTURES
    DUDA, RO
    HART, PE
    [J]. COMMUNICATIONS OF THE ACM, 1972, 15 (01) : 11 - &
  • [8] england nhs uk, NEVER EVENTS POLICY
  • [9] england.nhs.uk, about us
  • [10] Huang G., 2016, P IEEE C COMPUTER VI, DOI DOI 10.1109/CVPR.2017.243