Bi1-CuCo2O4 Hollow Carbon Nanofibers Boosts NH3 Production from Electrocatalytic Nitrate Reduction

被引:31
作者
Lin, Hexing [1 ,2 ,3 ]
Wei, Jinshan [1 ,2 ,3 ]
Guo, Ying [1 ,2 ,3 ]
Li, Yi [1 ,2 ,3 ]
Lu, Xihui [1 ,2 ,3 ]
Zhou, Chucheng [1 ,2 ,3 ]
Liu, Shaoqing [1 ,2 ,3 ]
Li, Ya-yun [1 ,2 ,3 ]
机构
[1] Shenzhen Univ, Coll Mat Sci & Engn, Guangdong Prov Key Lab New Energy Mat Serv Safety, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen Key Lab Special Funct Mat, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen Engn Lab Adv Technol Ceram, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
bismuth doping; CuCo2O4; electrocatalysis; nitrate reduction; single atom catalyst; Zn-NO3-; battery; AMMONIA; ELECTROREDUCTION; NANOPARTICLES; COMPOSITES; EVOLUTION; ENERGY;
D O I
10.1002/adfm.202409696
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ammonia, as a high-energy-density carrier for hydrogen storage, is in great demand worldwide. Electrocatalytic nitrate reduction reaction (NO3RR) provides a green NH3 production process. However, the complex reaction pathways for NO3RR to NH3 and the difficulty in controlling intermediate products limit the reduction process. Herein, by incorporating atomic-level bismuth (Bi) into CuCo2O4 hollow carbon nanofibers, the catalytic activity of the electrocatalyst for NO3RR is enhanced. The maximum Faradaic efficiency of Bi-1-CuCo2O4 is 95.53%, with an NH3 yield of 448.74 mu mol h(-1) cm(-2) at -0.8 V versus RHE. Density Functional Theory calculations show that the presence of Bi lowers the reaction barrier for the hydrogenation step from *NO2 to *NO2H, while promoting mass transfer on the release of *NH3 and the reactivation of surface-active sites. Differential charge density calculations also show that after Bi doping, the charge supplied by the catalyst to NO3- increases from 0.62 to 0.72 e(-), thus reasoned for enhanced NO3RR activity. The established nitrate-Zn battery shows an energy density of 2.81 mW cm(-2), thus implying the potential application.
引用
收藏
页数:10
相关论文
共 76 条
[71]   Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells [J].
Zhang, Rong ;
Li, Chuan ;
Cui, Huilin ;
Wang, Yanbo ;
Zhang, Shaoce ;
Li, Pei ;
Hou, Yue ;
Guo, Ying ;
Liang, Guojin ;
Huang, Zhaodong ;
Peng, Chao ;
Zhi, Chunyi .
NATURE COMMUNICATIONS, 2023, 14 (01)
[72]   Stabilizing Single-Atom Pt on Fe2O3 Nanosheets by Constructing Oxygen Vacancies for Ultrafast H2 Sensing [J].
Zhang, Songchen ;
Chang, Xiao ;
Zhou, Lihao ;
Liu, Xianghong ;
Zhang, Jun .
ACS SENSORS, 2024, 9 (04) :2101-2109
[73]   Direct Arylation Polycondensation-Derived Polythiophene Achieves Over 16% Efficiency in Binary Organic Solar Cells via Tuning Aggregation and Miscibility [J].
Zhang, Xuwen ;
Zhang, Tao ;
Liang, Ziqi ;
Shi, Yibo ;
Li, Saimeng ;
Xu, Chenhui ;
Li, Miaomiao ;
Ye, Long ;
Hou, Jianhui ;
Geng, Yanhou .
ADVANCED ENERGY MATERIALS, 2024, 14 (47)
[74]   Targeted Adsorption Enhancement with Lewis Acid Site Regulation for Efficient Nitrate-to-Ammonium Conversion [J].
Zhao, Dan ;
Ma, Changxu ;
Xie, Haijiao ;
Zhu, Kai ;
Zhao, Jing ;
Yin, Jinling ;
Yan, Jun ;
Li, Junqing ;
Cao, Dianxue ;
Wang, Guiling ;
Yao, Jiaxin .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (17) :6573-6583
[75]   p-Block-metal bismuth-based electrocatalysts featuring tunable selectivity for high-performance oxygen reduction reaction [J].
Zhuang, Zewen ;
Huang, Aijian ;
Tan, Xin ;
Sun, Kaian ;
Chen, Chen ;
Peng, Qing ;
Zhuang, Zhongbin ;
Han, Tong ;
Xiao, Hai ;
Zeng, Yuan ;
Yan, Wei ;
Zhang, Jiujun ;
Li, Yadong .
JOULE, 2023, 7 (05) :1003-1015
[76]   Elucidating dual-defect mechanism in rhenium disulfide nanosheets with multi-dimensional ion transport channels for ultrafast sodium storage [J].
Zong, Wei ;
Yang, Chao ;
Mo, Lulu ;
Ouyang, Yue ;
Guo, Hele ;
Ge, Lingfeng ;
Miao, Yue-E ;
Rao, Dewei ;
Zhang, Jiangwei ;
Lai, Feili ;
Liu, Tianxi .
NANO ENERGY, 2020, 77