Nanoscale insight into the reconstruction reaction mechanism of alkali-activated silicate materials

被引:5
作者
Huang, Jiazhi [1 ]
Wang, Baomin [1 ]
Shen, Lin [2 ]
机构
[1] Dalian Univ Technol, Sch Infrastruct Engn, Dalian 116024, Liaoning, Peoples R China
[2] Univ Hawaii Manoa, Civil & Environm Engn, 2540 Dole St, Honolulu, HI 96822 USA
基金
中国国家自然科学基金;
关键词
Alkali-activated silicate materials; Si monomer; Reactive force field; Molecular dynamic; Density functional theory; First-principles; SODIUM-SILICATE; WASTE GLASS; GEOPOLYMER; METAKAOLIN; DYNAMICS;
D O I
10.1016/j.ceramint.2024.06.315
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
As a green alternative to cement-based materials, alkali-activated silicate materials (AASM) have garnered attention for their ability to reduce greenhouse gas emissions and efficiently utilize industrial waste. During AASM preparation, Si monomers such as [SiO2(OH)2]2-, [SiO(OH)3]-, Si(OH)4 play a crucial role in governing the formation rate and unique gel structure of AASM. Despite their widespread use in construction, the microscopic mechanism of Si monomer formation from reactive SiO2 groups via reconstruction reactions (RR) remains unclear. This study comprehensively explored the structural transformations, formation pathways, and electron transfer mechanisms of Si monomers in AASM gels during RR using molecular dynamics (MD) simulations and first-principles calculations. We identified six distinct formation pathways for three Si monomers, with SiO2 -> SiO2H2O -> SiO2(H2O)2 -> SiO(OH)2H2O exhibiting the highest energy barrier of 16.61kJ/mol. Further analysis revealed a correlation between energy barriers and orbital hybridization strength, providing new insights into Si monomer formation mechanisms in AASM. This lays a solid foundation for optimizing AASM's preparation and enhancing its performance, further promoting the environmental friendliness and efficient utilization of AASM.
引用
收藏
页码:35089 / 35102
页数:14
相关论文
共 49 条
[21]   Mechanical strength and coordination defects in compressed silica glass: Molecular dynamics simulations [J].
Liang, Yunfeng ;
Miranda, Caetano R. ;
Scandolo, Sandro .
PHYSICAL REVIEW B, 2007, 75 (02)
[22]   Tuning oxygen packing in silica by nonhydrostatic pressure [J].
Liang, Yunfeng ;
Miranda, Caetano R. ;
Scandolo, Sandro .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[23]   Development of Water Reactive Potentials for Sodium Silicate Glasses [J].
Mahadevan, Thiruvilla S. ;
Sun, Wei ;
Du, Jincheng .
JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (20) :4452-4461
[24]   Combined modeling and experimental studies of hydroxylated silica nanoparticles [J].
Makimura, D. ;
Metin, C. ;
Kabashima, T. ;
Matsuoka, T. ;
Nguyen, Q. P. ;
Miranda, Caetano R. .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (18) :5084-5088
[25]   The study of disorder and nanocrystallinity in C-S-H, supplementary cementitious materials and geopolymers using pair distribution function analysis [J].
Meral, Cagla ;
Benmore, C. J. ;
Monteiro, Paulo J. M. .
CEMENT AND CONCRETE RESEARCH, 2011, 41 (07) :696-710
[26]   First-Principles Prediction of Amorphous Silica Nanoparticle Surface Charge: Effect of Size, pH, and Ionic Strength [J].
Nazemzadeh, Nima ;
Miranda, Caetano R. ;
Liang, Yunfeng ;
Andersson, Martin P. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 127 (44) :9608-9619
[27]   Utilization and efficiency of ground granulated blast furnace slag on concrete properties - A review [J].
Ozbay, Erdogan ;
Erdemir, Mustafa ;
Durmus, Halil Ibrahim .
CONSTRUCTION AND BUILDING MATERIALS, 2016, 105 :423-434
[28]   Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators [J].
Passuello, Ana ;
Rodriguez, Erich D. ;
Hirt, Eduardo ;
Longhi, Marlon ;
Bernal, Susan A. ;
Provis, John L. ;
Kirchheim, Ana Paula .
JOURNAL OF CLEANER PRODUCTION, 2017, 166 :680-689
[29]  
Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865
[30]   Dynamics of Confined Reactive Water in Smectite Clay-Zeolite Composites [J].
Pitman, Michael C. ;
van Duin, Adri C. T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (06) :3042-3053