EVENTUAL SMOOTHNESS AND STABILIZATION OF GLOBAL WEAK SOLUTIONS TO A CHEMOTAXIS SYSTEM WITH SUBLINEAR CONSUMPTION OF CHEMOATTRACTANT

被引:0
作者
Zhang, Zhuigang [1 ,2 ]
Li, Yuxiang [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 211189, Peoples R China
[2] Chongqing Three Gorges Univ, Sch Math & Stat, Wanzhou 404020, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2025年 / 30卷 / 03期
基金
中国国家自然科学基金;
关键词
Chemotaxis system; singular density-suppressed motility; superlinear consumption; global existence; EXISTENCE; BACTERIA; MODEL;
D O I
10.3934/dcdsb.2024107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates a chemotaxis system with sublinear consumption of chemoattractant {u(t) = Delta u del center dot (u del v), (*) v(t) = Delta v - uv(m) under homogeneous Neumann boundary conditions in bounded convex domain Omega subset of R-3 with smooth boundary. We prove that if m is an element of (0, 1], for arbitrarily large initial data, then the model (*) admits at least one global weak solution for which there exists T > 0 such that (u, v) is bounded and smooth in Omega x (T, infinity). Moreover, it is asserted that such solutions are seen to stabilize toward spatially constant equilibrium in the large time limit.
引用
收藏
页码:690 / 714
页数:25
相关论文
共 30 条
[1]   CHEMOTAXIS IN BACTERIA [J].
ADLER, J .
SCIENCE, 1966, 153 (3737) :708-&
[2]   CHEMORECEPTORS IN BACTERIA [J].
ADLER, J .
SCIENCE, 1969, 166 (3913) :1588-&
[3]   DYNAMIC THEORY OF QUASILINEAR PARABOLIC-SYSTEMS .3. GLOBAL EXISTENCE [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) :219-250
[4]  
[Anonymous], 2004, MILAN J MATH
[5]  
Dal Passo R, 1998, SIAM J MATH ANAL, V29, P321
[6]   CHEMOTAXIS-FLUID COUPLED MODEL FOR SWIMMING BACTERIA WITH NONLINEAR DIFFUSION: GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR [J].
Di Francesco, Marco ;
Lorz, Alexander ;
Markowich, Peter A. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (04) :1437-1453
[7]   Global Solutions to the Coupled Chemotaxis-Fluid Equations [J].
Duan, Renjun ;
Lorz, Alexander ;
Markowich, Peter .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (09) :1635-1673
[8]   Mathematical analysis of a model or the initiation of angiogenesis [J].
Fontelos, MA ;
Friedman, A ;
Hu, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (06) :1330-1355
[9]  
Henry D., 1981, Lecture Notes in Mathematics, V840
[10]   TRAVELING BANDS OF CHEMOTACTIC BACTERIA - THEORETICAL ANALYSIS [J].
KELLER, EF ;
SEGEL, LA .
JOURNAL OF THEORETICAL BIOLOGY, 1971, 30 (02) :235-&