Convolutional Neural Networks in Medical Imaging: A Review

被引:1
作者
Lin, Anjie [1 ]
Su, Bianping [1 ]
Ning, Yihe [2 ]
Zhang, Longqing [1 ]
He, Yantao [1 ]
机构
[1] Guangdong Univ Sci & Technol, 99 Xihu Rd, Dongguan 523083, Peoples R China
[2] Xijing Hosp, 127 West Rd, Xian 710032, Peoples R China
来源
ADVANCES IN SWARM INTELLIGENCE, PT II, ICSI 2024 | 2024年 / 14789卷
关键词
Convolutional Neural Networks; Medical Imaging; Deep Learning; FUNCTIONAL ARCHITECTURE; RECEPTIVE-FIELDS; NEOCOGNITRON;
D O I
10.1007/978-981-97-7184-4_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This review article traces the trajectory of Convolutional Neural Networks, providing an in-depth analysis of their foundational components: convolutional, pooling, and fully connected layers, and their integral function in feature extraction and image classification. It offers a comprehensive survey of landmark architectures such as LeNet, AlexNet, GoogLeNet, VGGNet, ResNet, ShuffleNet, and EfficientNet, examining their variants and their significant contributions to medical image processing. The review corroborates the transformative impact of CNNs in pivotal medical applications, including cancer detection, Alzheimer's diagnosis, and brain tumor identification. Additionally, It also examines the current challenges and issues, and outlines potential future directions for the field's evolution.
引用
收藏
页码:419 / 430
页数:12
相关论文
共 40 条
  • [1] Interpretation of intelligence in CNN-pooling processes: a methodological survey
    Akhtar, Nadeem
    Ragavendran, U.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (03) : 879 - 898
  • [2] Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
    Alzubaidi, Laith
    Zhang, Jinglan
    Humaidi, Amjad J.
    Al-Dujaili, Ayad
    Duan, Ye
    Al-Shamma, Omran
    Santamaria, J.
    Fadhel, Mohammed A.
    Al-Amidie, Muthana
    Farhan, Laith
    [J]. JOURNAL OF BIG DATA, 2021, 8 (01)
  • [3] Bacanin Dzakula N., 2019, SINTEZA 2019, P445, DOI [DOI 10.15308/SINTEZA-2019-445-451, 10.15308/sinteza-2019-445-451]
  • [4] Breast ultrasound image classification and physiological assessment based on GoogLeNet
    Chen, Shao-Hua
    Wu, Yan-Ling
    Pan, Can-Yu
    Lian, Luo-Yu
    Su, Qi-Chen
    [J]. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2023, 16 (03)
  • [5] Alexnet architecture variations with transfer learning for classification of wound images
    Eldem, Huseyin
    Ulker, Erkan
    Isikli, Osman Yasar
    [J]. ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2023, 45
  • [6] A guide to deep learning in healthcare
    Esteva, Andre
    Robicquet, Alexandre
    Ramsundar, Bharath
    Kuleshov, Volodymyr
    DePristo, Mark
    Chou, Katherine
    Cui, Claire
    Corrado, Greg
    Thrun, Sebastian
    Dean, Jeff
    [J]. NATURE MEDICINE, 2019, 25 (01) : 24 - 29
  • [7] NEOCOGNITRON - A HIERARCHICAL NEURAL NETWORK CAPABLE OF VISUAL-PATTERN RECOGNITION
    FUKUSHIMA, K
    [J]. NEURAL NETWORKS, 1988, 1 (02) : 119 - 130
  • [8] Ghosh A, 2020, INTEL SYST REF LIBR, V172, P519, DOI 10.1007/978-3-030-32644-9_36
  • [9] A Deep Learning Review of ResNet Architecture for Lung Disease Identification in CXR Image
    Hasanah, Syifa Auliyah
    Pravitasari, Anindya Apriliyanti
    Abdullah, Atje Setiawan
    Yulita, Intan Nurma
    Asnawi, Mohammad Hamid
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (24):
  • [10] An Improved LeNet-Deep Neural Network Model for Alzheimer's Disease Classification Using Brain Magnetic Resonance Images
    Hazarika, Ruhul Amin
    Abraham, Ajith
    Kandar, Debdatta
    Maji, Arnab Kumar
    [J]. IEEE ACCESS, 2021, 9 : 161194 - 161207