Separable Convolutional Network-Based Fault Diagnosis for High-Speed Train: A Gossip Strategy-Based Optimization Approach

被引:0
|
作者
Xue, Yihao [1 ,2 ]
Yang, Rui [1 ]
Chen, Xiaohan [1 ,2 ]
Song, Baoye [3 ]
Wang, Zidong [4 ]
机构
[1] Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Peoples R China
[2] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, Merseyside, England
[3] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China
[4] Brunel Univ London, Dept Comp Sci, London UB8 3PH, England
基金
中国国家自然科学基金;
关键词
Computational modeling; Data models; Fault diagnosis; Convergence; Optimization; Feature extraction; Information exchange; gossip strategy; high-speed train; local optimum; neural network;
D O I
10.1109/TII.2024.3452207
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of high-speed train, health monitoring of high-speed train traction power system has gradually become a popular research topic. The traction asynchronous motor, as a key component in the traction power systems, greatly affects the reliability, stability, and safety of high-speed train operation. Normally, when faults occur, the train needs to immediately slow down or even stop to avoid unimaginable losses, resulting in limited fault data. Traditional data-driven fault diagnosis methods may face the local optimum problem during the optimization process when training samples are insufficient. In this study, a novel gossip strategy-based fault diagnosis method is proposed to prevent the local optimum problem, thus improving fault diagnosis performance. The proposed gossip strategy-based fault diagnosis method is validated on the hardware-in-the-loop high-speed train traction control system simulation platform, and the experimental results unequivocally show that the proposed method outperforms other well-known methods.
引用
收藏
页码:307 / 316
页数:10
相关论文
共 50 条
  • [21] A Review of Fault Diagnosis Methods for Key Systems of the High-Speed Train
    Xie, Suchao
    Tan, Hongchuang
    Yang, Chengxing
    Yan, Hongyu
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [22] 1D Convolutional Neural Networks For Fault Diagnosis of High-speed Train Bogie
    Liang, Kaiwei
    Qin, Na
    Huang, Deqing
    Ma, Lei
    Fu, Yuanzhe
    Chen, Chunrong
    2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2018,
  • [23] A Fault Diagnosis Scheme for High-Speed Train Bogie based on Depth-wise Convolution
    Wu, Yunpu
    Jin, Weidong
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2018, : 169 - 174
  • [24] Fault diagnosis for high-speed train braking system based on disentangled causal representation learning
    Wang, Chong
    Liu, Jie
    EXPERT SYSTEMS, 2023, 40 (03)
  • [25] CNN-based Fault Diagnosis of High-speed Train with Imbalance Data: A Comparison Study
    Wu, Yunpu
    Jin, Weidong
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 5053 - 5058
  • [26] Monitoring data-based automatic fault diagnosis for the brake pipe of high-speed train
    Xie, Guo
    Ye, Minying
    Hei, Xinhong
    Qian, Fucai
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2018, 57 (03) : 246 - 254
  • [27] Optimization-Based Incipient Fault Isolation for the High-Speed Train Air Brake System
    Ji, Hongquan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [28] Early fault diagnosis strategy for high-speed train suspension systems based on model-agnostic meta-learning
    Yang, Funing
    Liu, Jikai
    Hua, Chunrong
    Liu, Weiqun
    Dong, Dawei
    VEHICLE SYSTEM DYNAMICS, 2024, 62 (10) : 2510 - 2532
  • [29] Hybrid System Model Based Fault Diagnosis for Speed and Position System of High-speed Train
    Xiong, Feng
    Zhang, Santong
    2019 6TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2019), 2019, : 763 - 767
  • [30] Significance Support Vector Machine for High-Speed Train Bearing Fault Diagnosis
    Sun, Bing
    Liu, Xiaofeng
    IEEE SENSORS JOURNAL, 2023, 23 (05) : 4638 - 4646