Remark on the Local Well-Posedness of Compressible Non-Newtonian Fluids with Initial Vacuum

被引:0
作者
Al Baba, Hind [1 ]
Al Taki, Bilal [1 ]
Hussein, Amru [1 ]
机构
[1] TU Kaiserlautern, RPTU Kaiserslautern Landau, Dept Math, Paul Ehrlich Str 31, D-67663 Kaiserslautern, Germany
关键词
Non-Newtonian fluids; Vacuum; Strong solutions; Blow-up criterion; RIESZ TRANSFORMS; LIE-GROUPS; SOLVABILITY; REGULARITY; UNIQUENESS; EXISTENCE; MODELS;
D O I
10.1007/s00021-024-00901-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss in this short note the local-in-time strong well-posedness of the compressible Navier-Stokes system for non-Newtonian fluids on the three dimensional torus. We show that the result established recently by Kalousek, M & aacute;cha, and Ne & ccaron;asova in https://doi.org/10.1007/s00208-021-02301-8 can be extended to the case where vanishing density is allowed initially. Our proof builds on the framework developed by Cho, Choe, and Kim in https://doi.org/10.1016/j.matpur.2003.11.004 for compressible Navier-Stokes equations in the case of Newtonian fluids. To adapt their method, special attention is given to the elliptic regularity of a challenging nonlinear elliptic system. We show particular results in this direction, however, the main result of this paper is proven in the general case when elliptic W2,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{2,p}$$\end{document}-regularity is imposed as an assumption. Also, we give a finite time blow-up criterion.
引用
收藏
页数:18
相关论文
共 43 条
  • [1] GENERALIZED SOLUTIONS TO MODELS OF COMPRESSIBLE VISCOUS FLUIDS
    Abbatiello, Anna
    Feireisl, Eduard
    Novotny, Antoni
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (01) : 1 - 28
  • [2] Riesz transforms on compact Lie groups, spheres and Gauss space
    Arcozzi, N
    [J]. ARKIV FOR MATEMATIK, 1998, 36 (02): : 201 - 231
  • [3] Second Order Riesz Transforms on Multiply-Connected Lie Groups and Processes with Jumps
    Arcozzi, Nicola
    Domelevo, Komla
    Petermichl, Stefanie
    [J]. POTENTIAL ANALYSIS, 2016, 45 (04) : 777 - 794
  • [4] Martingale Transforms and Their Projection Operators on Manifolds
    Banuelos, Rodrigo
    Baudoin, Fabrice
    [J]. POTENTIAL ANALYSIS, 2013, 38 (04) : 1071 - 1089
  • [5] Beiraoda Veiga H., 2013, RECENT DEV MATH FLUI, P99
  • [6] Global regularity for systems with p-structure depending on the symmetric gradient
    Berselli, Luigi C.
    Ruzicka, Michael
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 176 - 192
  • [7] LP-theory for a class of non-newtonian fluids
    Bothe, Dieter
    Pruess, Jan
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (02) : 379 - 421
  • [8] Unique solvability of the initial boundary value problems for compressible viscous fluids
    Cho, Y
    Choe, HJ
    Kim, H
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (02): : 243 - 275
  • [9] Second-Order Two-Sided Estimates in Nonlinear Elliptic Problems
    Cianchi, Andrea
    Maz'ya, Vladimir G.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 229 (02) : 569 - 599
  • [10] The Incompressible Navier-Stokes Equations in Vacuum
    Danchin, Raphael
    Mucha, Piotr Boguslaw
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (07) : 1351 - 1385