Toward Robust Cooperative Perception via Spatio-Temporal Modelling

被引:0
作者
Wang, Chao [1 ]
Yu, Xiaofei [1 ]
Weng, Junchao [1 ]
Zhang, Yong [1 ]
机构
[1] Changchun Guanghua Univ, Dept Elect Informat, Changchun 130033, Peoples R China
关键词
Feature extraction; Semantics; Point cloud compression; Transformers; Three-dimensional displays; Location awareness; Object detection; Signal processing; cooperative perception; 3D object detection; historical clues; spatio-temporal modelling;
D O I
10.1109/TCSII.2024.3383655
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cooperative perception as an emerging application of LiDAR-driven signal processing in driving scenarios has received widespread attention in recent years. Despite impressive advancements in previous works through sophisticated strategies, challenges remain due to inevitable data sparsity and localization errors. To this end, we propose a Spatio-Temporal Cooperative Perception (STCP) framework to address the above issues. Our novelties derive from two core components. A multi-scale temporal integration module is introduced to aggregate historical clues from the ego agent for mitigating data sparsity interference. In addition, we design a spatial cooperation transformer to perform pragmatic cooperation and eliminate the feature misalignment from collaborators due to localization errors. Extensive experiments are conducted on real-world and simulated multi-agent 3D object detection datasets. Quantitative analyses show that our framework outperforms existing methods on DAIR-V2X and V2X-Sim datasets with significant gains of 2.16% and 2.98% regarding AP@0.5.
引用
收藏
页码:4396 / 4400
页数:5
相关论文
共 50 条
  • [1] Deep Hierarchical Representation of Point Cloud Videos via Spatio-Temporal Decomposition
    Fan, Hehe
    Yu, Xin
    Yang, Yi
    Kankanhalli, Mohan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9918 - 9930
  • [2] Robust and Compatible Video Watermarking via Spatio-Temporal Enhancement and Multiscale Pyramid Attention
    Chen, Luan
    Wang, Chengyou
    Zhou, Xiao
    Qin, Zhiliang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (02) : 1548 - 1561
  • [3] Robust Online Tracking via Contrastive Spatio-Temporal Aware Network
    Yao, Siyuan
    Zhang, Hua
    Ren, Wenqi
    Ma, Chao
    Han, Xiaoguang
    Cao, Xiaochun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1989 - 2002
  • [4] An image warping approach to spatio-temporal modelling
    Aberg, S
    Lindgren, F
    Malmberg, A
    Holst, J
    Holst, U
    ENVIRONMETRICS, 2005, 16 (08) : 833 - 848
  • [5] Spatio-Temporal Deformable DETR for Weakly Supervised Defect Localization
    Kim, Young-Min
    Yoo, Yong-Ho
    Yoon, In-Ug
    Myung, Hyun
    Kim, Jong-Hwan
    IEEE SENSORS JOURNAL, 2023, 23 (17) : 19935 - 19945
  • [6] Multistage Spatio-Temporal Networks for Robust Sketch Recognition
    Li, Hanhui
    Jiang, Xudong
    Guan, Boliang
    Wang, Ruomei
    Thalmann, Nadia Magnenat
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 2683 - 2694
  • [7] Video Text Tracking With a Spatio-Temporal Complementary Model
    Gao, Yuzhe
    Li, Xing
    Zhang, Jiajian
    Zhou, Yu
    Jin, Dian
    Wang, Jing
    Zhu, Shenggao
    Bai, Xiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 9321 - 9331
  • [8] An integrated, spatio-temporal modelling framework for analysing biological invasions
    Mang, Thomas
    Essl, Franz
    Moser, Dietmar
    Kleinbauer, Ingrid
    Dullinger, Stefan
    DIVERSITY AND DISTRIBUTIONS, 2018, 24 (05) : 652 - 665
  • [9] A Spatial Calibration Method for Robust Cooperative Perception
    Song, Zhiying
    Xie, Tenghui
    Zhang, Hailiang
    Liu, Jiaxin
    Wen, Fuxi
    Li, Jun
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (05) : 4011 - 4018
  • [10] TrajMatch: Toward Automatic Spatio-Temporal Calibration for Roadside LiDARs Through Trajectory Matching
    Ren, Haojie
    Zhang, Sha
    Li, Sugang
    Li, Yao
    Li, Xinchen
    Ji, Jianmin
    Zhang, Yu
    Zhang, Yanyong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (11) : 12549 - 12559