Advances in Deep Learning for Super-Resolution Microscopy (Invited)

被引:0
作者
Lu, Xinyi [1 ,2 ]
Yu, Huang [3 ]
Zhang, Zitong [4 ]
Wu, Tianxiao [1 ,2 ]
Wu, Hongjun [1 ,2 ]
Liu, Yongtao [1 ,2 ]
Zhong, Fang [3 ]
Chao, Zuo [1 ,2 ]
Qian, Chen [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Coll Elect & Opt Engn, Smart Computat Imaging Lab, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Key Lab Spectral Imaging & Intelligent Sense, Nanjing 210094, Jiangsu, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Jiangsu, Peoples R China
[4] Shenzhen Fourth Peoples Hosp, Shenzhen Sami Med Ctr, Infect Management Dept, Shenzhen 518118, Guangdong, Peoples R China
关键词
deep learning; image reconstruction; microscopic imaging; super-; resolution; POINT-SPREAD-FUNCTION; LOCALIZATION MICROSCOPY; STIMULATED-EMISSION; FLUORESCENCE MICROSCOPY; DIFFRACTION-LIMIT; ILLUMINATION; RECONSTRUCTION; RESOLUTION; DYNAMICS;
D O I
10.3788/LOP241455
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Super- resolution microscopy imaging technology surpasses the diffraction limit of traditional microscopes, thereby offering unprecedented detail and allowing observation of the microscopic world below this limit. This advancement remarkably promotes developments in various fields such as biomedical, cytology, and neuroscience. However, existing super- resolution microscopy techniques have certain drawbacks, such as slow imaging speed, artifacts in reconstructed images, considerable light damage to biological samples, and low axial resolution. Recently, with advancements in artificial intelligence, deep learning has been applied to address these issues, overcoming the limitations of super- resolution microscopy imaging technology. This study examines the shortcomings of mainstream super- resolution microscopy imaging technology, summarizes how deep learning optimizes this technology, and evaluates the effectiveness of various networks based on the principles of super- resolution microscopy. Moreover, it analyzes the challenges of applying deep learning to this technology and explores future development prospects.
引用
收藏
页数:18
相关论文
共 74 条
[51]   3D Structured Illumination Microscopy via Channel Attention Generative Adversarial Network [J].
Qiao, Chang ;
Chen, Xingye ;
Zhang, Siwei ;
Li, Di ;
Guo, Yuting ;
Dai, Qionghai ;
Li, Dong .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2021, 27 (04)
[52]   Evaluation and development of deep neural networks for image super-resolution in optical microscopy [J].
Qiao, Chang ;
Li, Di ;
Guo, Yuting ;
Liu, Chong ;
Jiang, Tao ;
Dai, Qionghai ;
Li, Dong .
NATURE METHODS, 2021, 18 (02) :194-+
[53]   Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks [J].
Ren, Shaoqing ;
He, Kaiming ;
Girshick, Ross ;
Sun, Jian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (06) :1137-1149
[54]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[55]   Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J].
Rust, Michael J. ;
Bates, Mark ;
Zhuang, Xiaowei .
NATURE METHODS, 2006, 3 (10) :793-795
[56]   DBlink: dynamic localization microscopy in super spatiotemporal resolution via deep learning [J].
Saguy, Alon ;
Alalouf, Onit ;
Opatovski, Nadav ;
Jang, Soohyen ;
Heilemann, Mike ;
Shechtman, Yoav .
NATURE METHODS, 2023, 20 (12) :1939-1948
[57]  
Sahel Y B, arXiv
[58]   Structured illumination microscopy [J].
Saxena, Manish ;
Eluru, Gangadhar ;
Gorthi, Sai Siva .
ADVANCES IN OPTICS AND PHOTONICS, 2015, 7 (02) :241-275
[59]   Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy [J].
Schermelleh, Lothar ;
Carlton, Peter M. ;
Haase, Sebastian ;
Shao, Lin ;
Winoto, Lukman ;
Kner, Peter ;
Burke, Brian ;
Cardoso, M. Cristina ;
Agard, David A. ;
Gustafsson, Mats G. L. ;
Leonhardt, Heinrich ;
Sedat, John W. .
SCIENCE, 2008, 320 (5881) :1332-1336
[60]   Super-resolution microscopy demystified [J].
Schermelleh, Lothar ;
Ferrand, Alexia ;
Huser, Thomas ;
Eggeling, Christian ;
Sauer, Markus ;
Biehlmaier, Oliver ;
Drummen, Gregor P. C. .
NATURE CELL BIOLOGY, 2019, 21 (01) :72-84