Advances in Deep Learning for Super-Resolution Microscopy (Invited)

被引:0
|
作者
Lu, Xinyi [1 ,2 ]
Yu, Huang [3 ]
Zhang, Zitong [4 ]
Wu, Tianxiao [1 ,2 ]
Wu, Hongjun [1 ,2 ]
Liu, Yongtao [1 ,2 ]
Zhong, Fang [3 ]
Chao, Zuo [1 ,2 ]
Qian, Chen [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Coll Elect & Opt Engn, Smart Computat Imaging Lab, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Key Lab Spectral Imaging & Intelligent Sense, Nanjing 210094, Jiangsu, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Jiangsu, Peoples R China
[4] Shenzhen Fourth Peoples Hosp, Shenzhen Sami Med Ctr, Infect Management Dept, Shenzhen 518118, Guangdong, Peoples R China
关键词
deep learning; image reconstruction; microscopic imaging; super-; resolution; POINT-SPREAD-FUNCTION; LOCALIZATION MICROSCOPY; STIMULATED-EMISSION; FLUORESCENCE MICROSCOPY; DIFFRACTION-LIMIT; ILLUMINATION; RECONSTRUCTION; RESOLUTION; DYNAMICS;
D O I
10.3788/LOP241455
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Super- resolution microscopy imaging technology surpasses the diffraction limit of traditional microscopes, thereby offering unprecedented detail and allowing observation of the microscopic world below this limit. This advancement remarkably promotes developments in various fields such as biomedical, cytology, and neuroscience. However, existing super- resolution microscopy techniques have certain drawbacks, such as slow imaging speed, artifacts in reconstructed images, considerable light damage to biological samples, and low axial resolution. Recently, with advancements in artificial intelligence, deep learning has been applied to address these issues, overcoming the limitations of super- resolution microscopy imaging technology. This study examines the shortcomings of mainstream super- resolution microscopy imaging technology, summarizes how deep learning optimizes this technology, and evaluates the effectiveness of various networks based on the principles of super- resolution microscopy. Moreover, it analyzes the challenges of applying deep learning to this technology and explores future development prospects.
引用
收藏
页数:18
相关论文
共 74 条
  • [1] Progress and Prospect of Research on Single-molecule Localization Super-resolution Microscopy(Invited Review)
    An Sha
    Dan Dan
    Yu Xiang-hua
    Peng Tong
    Yao Bao-li
    [J]. ACTA PHOTONICA SINICA, 2020, 49 (09)
  • [2] Imaging intracellular fluorescent proteins at nanometer resolution
    Betzig, Eric
    Patterson, George H.
    Sougrat, Rachid
    Lindwasser, O. Wolf
    Olenych, Scott
    Bonifacino, Juan S.
    Davidson, Michael W.
    Lippincott-Schwartz, Jennifer
    Hess, Harald F.
    [J]. SCIENCE, 2006, 313 (5793) : 1642 - 1645
  • [3] Boyd N, 2018, bioRxiv, DOI [10.1101/267096, 10.1101/267096, DOI 10.1101/267096, DOI 10.1101/267096V1]
  • [4] Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks
    Brunstein, Maia
    Wicker, Kai
    Herault, Karine
    Heintzmann, Rainer
    Oheim, Martin
    [J]. OPTICS EXPRESS, 2013, 21 (22): : 26162 - 26173
  • [5] Untrained, physics-informed neural networks for structured illumination microscopy
    Burns, Zachary
    Liu, Zhaowei
    [J]. OPTICS EXPRESS, 2023, 31 (05) : 8714 - 8724
  • [6] Inverse matrix based phase estimation algorithm for structured illumination microscopy
    Cao, Ruizhi
    Chen, Youhua
    Liu, Wenjie
    Zhu, Dazhao
    Kuang, Cuifang
    Xu, Yingke
    Liu, Xu
    [J]. BIOMEDICAL OPTICS EXPRESS, 2018, 9 (10): : 5037 - 5051
  • [7] Super-resolution nanofabrication with metal-ion doped hybrid material through an optical dual-beam approach
    Cao, Yaoyu
    Li, Xiangping
    Gu, Min
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (26)
  • [8] DeepCEL0 for 2D single-molecule localization in fluorescence microscopy
    Cascarano, Pasquale
    Comes, Maria Colomba
    Sebastiani, Andrea
    Mencattini, Arianna
    Piccolomini, Elena Loli
    Martinelli, Eugenio
    [J]. BIOINFORMATICS, 2022, 38 (05) : 1411 - 1419
  • [9] Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles
    Chen, Chaohao
    Wang, Fan
    Wen, Shihui
    Su, Qian Peter
    Wu, Mike C. L.
    Liu, Yongtao
    Wang, Baoming
    Li, Du
    Shan, Xuchen
    Kianinia, Mehran
    Aharonovich, Igor
    Toth, Milos
    Jackson, Shaun P.
    Xi, Peng
    Jin, Dayong
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [10] Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond
    Chen, Xiangdong
    Zou, Changling
    Gong, Zhaojun
    Dong, Chunhua
    Guo, Guangcan
    Sun, Fangwen
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2015, 4 : e230 - e230