Advances in Deep Learning for Super-Resolution Microscopy (Invited)

被引:0
作者
Lu, Xinyi [1 ,2 ]
Yu, Huang [3 ]
Zhang, Zitong [4 ]
Wu, Tianxiao [1 ,2 ]
Wu, Hongjun [1 ,2 ]
Liu, Yongtao [1 ,2 ]
Zhong, Fang [3 ]
Chao, Zuo [1 ,2 ]
Qian, Chen [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Coll Elect & Opt Engn, Smart Computat Imaging Lab, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Key Lab Spectral Imaging & Intelligent Sense, Nanjing 210094, Jiangsu, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Jiangsu, Peoples R China
[4] Shenzhen Fourth Peoples Hosp, Shenzhen Sami Med Ctr, Infect Management Dept, Shenzhen 518118, Guangdong, Peoples R China
关键词
deep learning; image reconstruction; microscopic imaging; super-; resolution; POINT-SPREAD-FUNCTION; LOCALIZATION MICROSCOPY; STIMULATED-EMISSION; FLUORESCENCE MICROSCOPY; DIFFRACTION-LIMIT; ILLUMINATION; RECONSTRUCTION; RESOLUTION; DYNAMICS;
D O I
10.3788/LOP241455
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Super- resolution microscopy imaging technology surpasses the diffraction limit of traditional microscopes, thereby offering unprecedented detail and allowing observation of the microscopic world below this limit. This advancement remarkably promotes developments in various fields such as biomedical, cytology, and neuroscience. However, existing super- resolution microscopy techniques have certain drawbacks, such as slow imaging speed, artifacts in reconstructed images, considerable light damage to biological samples, and low axial resolution. Recently, with advancements in artificial intelligence, deep learning has been applied to address these issues, overcoming the limitations of super- resolution microscopy imaging technology. This study examines the shortcomings of mainstream super- resolution microscopy imaging technology, summarizes how deep learning optimizes this technology, and evaluates the effectiveness of various networks based on the principles of super- resolution microscopy. Moreover, it analyzes the challenges of applying deep learning to this technology and explores future development prospects.
引用
收藏
页数:18
相关论文
共 74 条
[1]   Progress and Prospect of Research on Single-molecule Localization Super-resolution Microscopy(Invited Review) [J].
An Sha ;
Dan Dan ;
Yu Xiang-hua ;
Peng Tong ;
Yao Bao-li .
ACTA PHOTONICA SINICA, 2020, 49 (09)
[2]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[3]  
Boyd N, 2018, bioRxiv, DOI [10.1101/267096, 10.1101/267096, DOI 10.1101/267096, DOI 10.1101/267096V1]
[4]   Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks [J].
Brunstein, Maia ;
Wicker, Kai ;
Herault, Karine ;
Heintzmann, Rainer ;
Oheim, Martin .
OPTICS EXPRESS, 2013, 21 (22) :26162-26173
[5]   Untrained, physics-informed neural networks for structured illumination microscopy [J].
Burns, Zachary ;
Liu, Zhaowei .
OPTICS EXPRESS, 2023, 31 (05) :8714-8724
[6]   Inverse matrix based phase estimation algorithm for structured illumination microscopy [J].
Cao, Ruizhi ;
Chen, Youhua ;
Liu, Wenjie ;
Zhu, Dazhao ;
Kuang, Cuifang ;
Xu, Yingke ;
Liu, Xu .
BIOMEDICAL OPTICS EXPRESS, 2018, 9 (10) :5037-5051
[7]   Super-resolution nanofabrication with metal-ion doped hybrid material through an optical dual-beam approach [J].
Cao, Yaoyu ;
Li, Xiangping ;
Gu, Min .
APPLIED PHYSICS LETTERS, 2014, 105 (26)
[8]   DeepCEL0 for 2D single-molecule localization in fluorescence microscopy [J].
Cascarano, Pasquale ;
Comes, Maria Colomba ;
Sebastiani, Andrea ;
Mencattini, Arianna ;
Piccolomini, Elena Loli ;
Martinelli, Eugenio .
BIOINFORMATICS, 2022, 38 (05) :1411-1419
[9]   Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles [J].
Chen, Chaohao ;
Wang, Fan ;
Wen, Shihui ;
Su, Qian Peter ;
Wu, Mike C. L. ;
Liu, Yongtao ;
Wang, Baoming ;
Li, Du ;
Shan, Xuchen ;
Kianinia, Mehran ;
Aharonovich, Igor ;
Toth, Milos ;
Jackson, Shaun P. ;
Xi, Peng ;
Jin, Dayong .
NATURE COMMUNICATIONS, 2018, 9
[10]   Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond [J].
Chen, Xiangdong ;
Zou, Changling ;
Gong, Zhaojun ;
Dong, Chunhua ;
Guo, Guangcan ;
Sun, Fangwen .
LIGHT-SCIENCE & APPLICATIONS, 2015, 4 :e230-e230