Local minimality properties of circular motions in 1/rα potentials and of the figure-eight solution of the 3-body problem

被引:0
作者
Fenucci, M. [1 ,2 ]
机构
[1] Univ Belgrade, Fac Math, Dept Astron, Studentski trg 16, Belgrade 11000, Serbia
[2] Univ Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56127 Pisa, Italy
来源
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2022年 / 3卷 / 01期
基金
欧盟地平线“2020”;
关键词
Local minimality; Calculus of variations; Periodic solutions; Kepler problem; Figure-eight; VARIATIONAL-PROBLEMS; PERIODIC-ORBITS; POINTS; CHOREOGRAPHIES; SUFFICIENCY; STABILITY; EXISTENCE; CALCULUS;
D O I
10.1007/s42985-022-00148-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first take into account variational problems with periodic boundary conditions, and briefly recall some sufficient conditions for a periodic solution of the Euler-Lagrange equation to be either a directional, a weak, or a strong local minimizer. We then apply the theory to circular orbits of the Kepler problem with potentials of type 1/r(alpha),alpha >0. By using numerical computations, we show that circular solutions are strong local minimizers for alpha >1, while they are saddle points for alpha is an element of(0,1). Moreover, we show that for alpha is an element of(1,2) the global minimizer of the action over periodic curves with degree 2 with respect to the origin could be achieved on non-collision and non-circular solutions. After, we take into account the figure-eight solution of the 3-body problem, and we show that it is a strong local minimizer over a particular set of symmetric periodic loops.
引用
收藏
页数:17
相关论文
共 39 条
[1]  
Allwright J, 2005, CONTROL CYBERN, V34, P617
[2]  
[Anonymous], 2000, Progr. Math.
[3]   Hip-hop solutions of the 2N-body problem [J].
Barrabes, Esther ;
Cors, Josep Maria ;
Pinyol, Conxita ;
Soler, Jaume .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2006, 95 (1-4) :55-66
[4]   A remarkable periodic solution of the three-body problem in the case of equal masses [J].
Chenciner, A ;
Montgomery, R .
ANNALS OF MATHEMATICS, 2000, 152 (03) :881-901
[5]  
Chenciner A, 2000, CELEST MECH DYN ASTR, V77, P139, DOI 10.1023/A:1008381001328
[6]  
Chenciner A., 2005, 14 INT C MATH PHYS, P4
[7]  
Chenciner A., 2002, P INT C MATH BEIJ, VIII, P279
[8]  
Chtcherbakova NN., 2006, J. Math. Sci, V135, P3256, DOI [10.1007/s10958-006-0155-1, DOI 10.1007/S10958-006-0155-1]
[9]   SUFFICIENCY AND THE JACOBI CONDITION IN THE CALCULUS OF VARIATIONS [J].
CLARKE, FH ;
ZEIDAN, V .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1986, 38 (05) :1199-1209
[10]  
Dol Z., 1994, Differ. Equ. Dynam. Syst, V2, P137