Solvability of functional third-order problems of Ambrosetti-Prodi-type

被引:0
作者
Minhos, Feliz [1 ,2 ]
Oliveira, Nuno [2 ]
机构
[1] Univ Evora, Sch Sci & Technol, Dept Math, Evora, Portugal
[2] Univ Evora, Ctr Invest Matemat & Aplicacoes CIMA, Inst Invest & Formacao Avancada, Rua Romao Ramalho 59, P-7000671 Evora, Portugal
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2024年 / 139卷
关键词
Ambrosetti-Prodi alternative; Functional boundary conditions; Lower and upper solutions; Nagumo condition; Degree theory; BOUNDARY-VALUE-PROBLEMS; EXISTENCE;
D O I
10.1016/j.cnsns.2024.108312
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work presents an Ambrosetti-Prodi alternative for functional problems composed of a fully third-order differential equation with two types of functional boundary conditions. The discussion of existence and non-existence of solution is obtained in a more general case, and the multiplicity of solution is done with restrictive boundary conditions- The main arguments are based on the lower and upper solutions method, together with the Leray-Schauder topological degree theory. We stress that the multiplicity situation requires different speed growths on the variables. An example illustrates the results' applicability and shows a technique to estimate the bifurcation values of the parameter.
引用
收藏
页数:13
相关论文
共 22 条
[1]   Existence theory for coupled nonlinear third-order ordinary differential equations with nonlocal multi-point anti-periodic type boundary conditions on an arbitrary domain [J].
Ahmad, Bashir ;
Alsaedi, Ahmed ;
Alsulami, Mona ;
Ntouyas, Sotiris K. .
AIMS MATHEMATICS, 2019, 4 (06) :1634-1663
[2]   Existence results for third order nonlinear boundary value problems arising in nano boundary layer fluid flows over stretching surfaces [J].
Akyildiz, F. Talay ;
Bellout, Hamid ;
Vajravelu, Kuppalapalle ;
Van Gorder, Robert A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (06) :2919-2930
[3]   The critical fractional Ambrosetti-Prodi problem [J].
Ambrosio, Vincenzo ;
Isernia, Teresa .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (03) :1107-1132
[4]   Multipoint boundary value problems of Neumann type for functional differential equations [J].
Ana Dominguez-Perez, Maria ;
Rodriguez-Lopez, Rosana .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (04) :1662-1675
[5]  
[Anonymous], 1972, Ann. Math. Pura Appl, DOI DOI 10.1007/BF02412022
[6]   Extremal solutions to fourth order discontinuous functional boundary value problems [J].
Cabada, Alberto ;
Fialho, Joao ;
Minhos, Feliz .
MATHEMATISCHE NACHRICHTEN, 2013, 286 (17-18) :1744-1751
[7]   Uniqueness implies existence and uniqueness criterion for nonlocal boundary value problems for third order differential equations [J].
Clark, Stephen ;
Henderson, Johnny .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (11) :3363-3372
[8]   A remark on the Ambrosetti-Prodi type problem [J].
Ding, Lei ;
Sun, Mingzheng ;
Tian, Rushun .
APPLIED MATHEMATICS LETTERS, 2021, 111
[9]   Higher order boundary value problems with φ-Laplacian and functional boundary conditions [J].
Graef, John R. ;
Kong, Lingju ;
Minhos, Feliz M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (02) :236-249
[10]   Third order boundary value problems with nonlocal boundary conditions [J].
Graef, John R. ;
Webb, J. R. L. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :1542-1551