Identifying L-H transition in HL-2A through deep learning

被引:0
作者
He, Meihuizi [1 ,2 ]
Yang, Zongyu [2 ]
Liu, Songfen [1 ]
Xia, Fan [2 ]
Zhong, Wulyu [2 ]
机构
[1] Nankai Univ, Sch Phys, Weijin Rd 94, Tianjin 300071, Peoples R China
[2] Southwestern Inst Phys, POB 432, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金;
关键词
tokamak; deep learning; L-H transition; HEATED DIVERTOR DISCHARGES; CONFINEMENT; TOKAMAK; MODE;
D O I
10.1088/1361-6587/ad75b7
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
During the operation of tokamak devices, addressing the thermal load issues caused by edge localized modes (ELMs) eruption is crucial. Ideally, mitigation and suppression measures for ELMs should be promptly initiated as soon as the first low-to-high confinement (L-H) transition occurs, which necessitates the real-time monitoring and accurate identification of the L-H transition process. Motivated by this, and by recent deep learning boom, we propose a deep learning-based L-H transition identification algorithm on HL-2A tokamak. In this work, we have constructed a neural network comprising layers of Residual long short-term memory and temporal convolutional network. Unlike previous work based on recognition for ELMs by slice, this method implements recognition on L-H transition process before the first ELMs crash. Therefore the mitigation techniques can be triggered in time to suppress the initial ELMs bursts. In order to further explain the effectiveness of the algorithm, we developed a series of evaluation indicators by shots, and the results show that this algorithm can provide necessary reference for the mitigation and suppression system.
引用
收藏
页数:11
相关论文
共 21 条
  • [1] Bai SJ, 2018, Arxiv, DOI [arXiv:1803.01271, 10.48550/arXiv.1803.01271]
  • [2] Cardona JL, 2019, ADV NEUR IN, V32
  • [3] [黄尧 Huang Yao], 2020, [核聚变与等离子体物理, Nuclear Fusion and Plasma Physics], V40, P300
  • [4] Overview of the results on divertor heat loads in RMP controlled H-mode plasmas on DIII-D
    Jakubowski, M. W.
    Evans, T. E.
    Fenstermacher, M. E.
    Groth, M.
    Lasnier, C. J.
    Leonard, A. W.
    Schmitz, O.
    Watkins, J. G.
    Eich, T.
    Fundamenski, W.
    Moyer, R. A.
    Wolf, R. C.
    Baylor, L. B.
    Boedo, J. A.
    Burrell, K. H.
    Frerichs, H.
    deGrassie, J. S.
    Gohil, P.
    Joseph, I.
    Mordijck, S.
    Lehnen, M.
    Petty, C. C.
    Pinsker, R. I.
    Reiter, D.
    Rhodes, T. L.
    Samm, U.
    Schaffer, M. J.
    Snyder, P. B.
    Stoschus, H.
    Osborne, T.
    Unterberg, B.
    Unterberg, E.
    West, W. P.
    [J]. NUCLEAR FUSION, 2009, 49 (09)
  • [5] KAYE SM, 1984, J NUCL MATER, V121, P115, DOI 10.1016/0022-3115(84)90111-9
  • [6] Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER
    Loarte, A
    Saibene, G
    Sartori, R
    Campbell, D
    Becoulet, M
    Horton, L
    Eich, T
    Herrmann, A
    Matthews, G
    Asakura, N
    Chankin, A
    Leonard, A
    Porter, G
    Federici, G
    Janeschitz, G
    Shimada, M
    Sugihara, M
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2003, 45 (09) : 1549 - 1569
  • [7] OBSERVATION OF H-MODE CONFINEMENT IN THE DIII-D TOKAMAK WITH ELECTRON-CYCLOTRON HEATING
    LOHR, J
    STALLARD, BW
    PRATER, R
    SNIDER, RT
    BURRELL, KH
    GROEBNER, RJ
    HILL, DN
    MATSUDA, K
    MOELLER, CP
    PETRIE, TW
    STJOHN, H
    TAYLOR, TS
    [J]. PHYSICAL REVIEW LETTERS, 1988, 60 (25) : 2630 - 2633
  • [8] Loshchilov I, 2019, Arxiv, DOI [arXiv:1711.05101, DOI 10.48550/ARXIV.1711.05101,ARXIV, 10.48550/arXiv.1711.05101]
  • [9] Power requirement for accessing the H-mode in ITER
    Martin, Y. R.
    Takizuka, T.
    [J]. 11TH IAEA TECHNICAL MEETING ON H-MODE PHYSICS AND TRANSPORT BARRIERS, 2008, 123
  • [10] Third harmonic EC heating of ELMy H-mode in TCV
    Martin, YR
    Porte, L
    Alberti, S
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 : A163 - A169