Domain-Collaborative Contrastive Learning for Hyperspectral Image Classification

被引:1
|
作者
Luo, Haiyang [1 ,2 ]
Qiao, Xueyi [3 ]
Xu, Yongming [4 ]
Zhong, Shengwei [1 ,2 ]
Gong, Chen [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Jiangsu Key Lab Image & Video Understanding Social, Key Lab Intelligent Percept & Syst High Dimens Inf, Minist Educ,PCA Lab, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[3] Zhengzhou Tobacco Res Inst CNTC, Zhengzhou 450001, Peoples R China
[4] China Tobacco Henan Ind Co Ltd, Technol Ctr, Zhengzhou 450001, Peoples R China
基金
美国国家科学基金会;
关键词
Feature extraction; Hyperspectral imaging; Contrastive learning; Accuracy; Image classification; Indexes; Training; Contrastive learning (CL); hyperspectral image classification (HSIC); unsupervised domain adaptation (UDA);
D O I
10.1109/LGRS.2024.3425482
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Variations in atmosphere, lighting, and imaging systems result in diverse category distributions in hyperspectral imagery, impacting the accuracy of cross-domain hyperspectral image classification (HSIC). Unsupervised domain adaptation (UDA) aims to address this issue by learning a model that generalizes effectively across domains, leveraging labels only from source domain (SD). Most existing UDA methods focus on aligning distributions between domains without fully considering the valuable information within individual domains. To fill this gap, this letter proposes a domain-collaborative contrastive learning (DCCL) method. DCCL integrates a novel pseudo-labeling strategy with a cross-domain contrastive learning (CL) framework. Specifically, in the pseudo-labeling phase, the confident examples in target domain (TD) are collaboratively labeled according to the labeled examples in SD and the class centers in TD. Then, the CL phase simultaneously minimizes in-domain and cross-domain contrastive loss to promote the aggregation of examples from the same category in both domains. Experimental results demonstrate that the DCCL achieves the accuracy rates of 93.47% and 54.59% on Pavia and Indiana datasets, respectively, surpassing the performance of other state-of-the-art UDA methods. Our source code is available at https://github.com/Leap-luohaiyang/DCCL-2024.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Deep Cross-Domain Few-Shot Learning for Hyperspectral Image Classification
    Li, Zhaokui
    Liu, Ming
    Chen, Yushi
    Xu, Yimin
    Li, Wei
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [42] Label contrastive learning for image classification
    Han Yang
    Jun Li
    Soft Computing, 2023, 27 : 13477 - 13486
  • [43] A 3-D-Swin Transformer-Based Hierarchical Contrastive Learning Method for Hyperspectral Image Classification
    Huang, Xin
    Dong, Mengjie
    Li, Jiayi
    Guo, Xian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [44] Prototypical contrastive learning for image classification
    Han Yang
    Jun Li
    Cluster Computing, 2024, 27 : 2059 - 2069
  • [45] Label contrastive learning for image classification
    Yang, Han
    Li, Jun
    SOFT COMPUTING, 2023, 27 (18) : 13477 - 13486
  • [46] Adversarial Prototype Learning for Hyperspectral Image Classification
    Wang, Shuai
    Du, Bo
    Zhang, Dingwen
    Wan, Fang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [47] Collaborative Superpixelwised PCA for Hyperspectral Image Classification
    Yao, Chao
    Gu, Junrui
    Guo, Zehua
    Ma, Miao
    Guo, Qingrui
    Cheng, Gong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 2589 - 2601
  • [48] MCFT: Multimodal Contrastive Fusion Transformer for Classification of Hyperspectral Image and LiDAR Data
    Feng, Yining
    Jin, Jiarui
    Yin, Yin
    Song, Chuanming
    Wang, Xianghai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [49] Joint Collaborative Representation With Multitask Learning for Hyperspectral Image Classification
    Li, Jiayi
    Zhang, Hongyan
    Zhang, Liangpei
    Huang, Xin
    Zhang, Lefei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (09): : 5923 - 5936
  • [50] Multi-Source Collaborative Contrastive Learning for Decentralized Domain Adaptation
    Wei, Yikang
    Yang, Liu
    Han, Yahong
    Hu, Qinghua
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (05) : 2202 - 2216