Domain-Collaborative Contrastive Learning for Hyperspectral Image Classification

被引:1
|
作者
Luo, Haiyang [1 ,2 ]
Qiao, Xueyi [3 ]
Xu, Yongming [4 ]
Zhong, Shengwei [1 ,2 ]
Gong, Chen [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Jiangsu Key Lab Image & Video Understanding Social, Key Lab Intelligent Percept & Syst High Dimens Inf, Minist Educ,PCA Lab, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[3] Zhengzhou Tobacco Res Inst CNTC, Zhengzhou 450001, Peoples R China
[4] China Tobacco Henan Ind Co Ltd, Technol Ctr, Zhengzhou 450001, Peoples R China
基金
美国国家科学基金会;
关键词
Feature extraction; Hyperspectral imaging; Contrastive learning; Accuracy; Image classification; Indexes; Training; Contrastive learning (CL); hyperspectral image classification (HSIC); unsupervised domain adaptation (UDA);
D O I
10.1109/LGRS.2024.3425482
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Variations in atmosphere, lighting, and imaging systems result in diverse category distributions in hyperspectral imagery, impacting the accuracy of cross-domain hyperspectral image classification (HSIC). Unsupervised domain adaptation (UDA) aims to address this issue by learning a model that generalizes effectively across domains, leveraging labels only from source domain (SD). Most existing UDA methods focus on aligning distributions between domains without fully considering the valuable information within individual domains. To fill this gap, this letter proposes a domain-collaborative contrastive learning (DCCL) method. DCCL integrates a novel pseudo-labeling strategy with a cross-domain contrastive learning (CL) framework. Specifically, in the pseudo-labeling phase, the confident examples in target domain (TD) are collaboratively labeled according to the labeled examples in SD and the class centers in TD. Then, the CL phase simultaneously minimizes in-domain and cross-domain contrastive loss to promote the aggregation of examples from the same category in both domains. Experimental results demonstrate that the DCCL achieves the accuracy rates of 93.47% and 54.59% on Pavia and Indiana datasets, respectively, surpassing the performance of other state-of-the-art UDA methods. Our source code is available at https://github.com/Leap-luohaiyang/DCCL-2024.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Cross-Domain Contrastive Learning for Hyperspectral Image Classification
    Guan, Peiyan
    Lam, Edmund Y.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Domain Fusion Contrastive Learning for Cross-Scene Hyperspectral Image Classification
    Qiu, Zhao
    Xu, Jie
    Peng, Jiangtao
    Sun, Weiwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [3] Collaborative Contrastive Learning for Hyperspectral and LiDAR Classification
    Jia, Sen
    Zhou, Xi
    Jiang, Shuguo
    He, Ruyan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] Vision Transformer With Contrastive Learning for Hyperspectral Image Classification
    Zhou, Heng
    Zhang, Xin
    Zhang, Chunlei
    Ma, Qiaoyu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [5] Mask-Enhanced Contrastive Learning for Hyperspectral Image Classification
    Cao, Xianghai
    Yu, Jiayu
    Xu, Ruijie
    Wei, Jiaxuan
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [6] Negative Samples Mining Matters: Reconsidering Hyperspectral Image Classification With Contrastive Learning
    Liu, Hui
    Huang, Chenjia
    Chen, Ning
    Xie, Tao
    Lu, Mingyue
    Huang, Zhou
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [7] Two-Stream Networks for Contrastive Learning in Hyperspectral Image Classification
    Xia, Shuxiang
    Zhang, Xiaohua
    Meng, Hongyun
    Fan, Jiaxin
    Jiao, Licheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1903 - 1920
  • [8] Adversarial Domain Alignment With Contrastive Learning for Hyperspectral Image Classification
    Liu, Fang
    Gao, Wenfei
    Liu, Jia
    Tang, Xu
    Xiao, Liang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [9] Self-Correlation Network With Triple Contrastive Learning for Hyperspectral Image Classification With Noisy Labels
    Sarpong, Kwabena
    Awrangjeb, Mohammad
    Islam, Md. Saiful
    Helmy, Islam
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 7166 - 7188
  • [10] Cross-Modality Contrastive Learning for Hyperspectral Image Classification
    Hang, Renlong
    Qian, Xuwei
    Liu, Qingshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60