共 50 条
FLOW AND HEAT-TRANSFER CHARACTERISTICS IN SMALL-DIAMETER TUBE BUNDLES WITH A STAGGERED LAYOUT: AN EXPERIMENTAL STUDY
被引:0
作者:
Qi, Han
[1
,2
,3
]
Xu, Guoqiang
[1
,2
,3
]
Liu, Weitong
[1
,2
,3
]
Zhang, Lina
[1
,2
,4
]
Fu, Yanchen
[1
,2
,4
,5
]
机构:
[1] Beihang Univ, Res Inst Aeroengine, Beijing 100191, Peoples R China
[2] Beihang Univ, Natl Key Lab Sci & Technol Aeroengine Aerothermody, Beijing 100191, Peoples R China
[3] Beihang Univ, Sch Energy & Power Engn, Beijing 100191, Peoples R China
[4] Beihang Univ, Frontiers Sci Ctr Supercycle Aeroengines Aerotherm, Beijing 100191, Peoples R China
[5] Beihang Univ, Collaborat Innovat Ctr Adv Aeroengine, Beijing 100191, Peoples R China
关键词:
tube bundle;
heat transfer;
pressure drop;
small diameter;
staggered row;
FINITE ANALYTIC SOLUTION;
CROSS-FLOW;
TRANSFER ENHANCEMENT;
PERFORMANCE;
EXCHANGER;
ARRAYS;
D O I:
10.1615/JENHHEATTRANSF.2024050403
中图分类号:
O414.1 [热力学];
学科分类号:
摘要:
While past research has primarily focused on heat transfer in larger diameter tubes, the capabilities of small-diameter tubes have often been estimated using correction factors. However, with the evolution of compact heat exchangers, conducting dedicated studies on small-diameter tube bundles has become increasingly crucial to achieve more precise conclusions. An experimental research on flow and heat-transfer characteristics of staggered tube bundles with different tube diameters (2, 3, and 5 mm) is conducted. In the experiment, the number of rows (4-12), the mass rate of the air (0.06-0.18 kg/s), and the transverse tube pitch (S 1 /d = 2, S 1 /d = 3) are variables to study the characteristics of the airside flow resistance and heat transfer. The three main conclusions of the experimental results are as follows: (1) Under the same conditions, the smaller tube diameter leads to the larger airside convective heat-transfer coefficient. Besides, the deviation between the Nusselt number of the experiment and the empirical correlation of & Zcaron;ukauskas is in the range between -14 and -10%; (2) The effect of transverse distance on heat transfer is not obvious, but the convective heat-transfer coefficient increases significantly with the increase of row number; (3) The external pressure drop of the tube exhibits an exponential increase with the air-flow rate. Particularly in the experimental samples with smaller diameters, the outflow resistance of the tube is noticeably higher compared to other tubes. Finally, new empirical correlations of the airside convection heat transfer for the small-diameter staggered tube bundles are fitted according to the experimental data, and it is hoped to provide a reference for the more accurate design of tube-bundle heat exchangers.
引用
收藏
页码:33 / 52
页数:20
相关论文