An online payload identification method based on parameter difference for industrial robots

被引:2
作者
Xu, Tian [1 ,2 ]
Tuo, Hua [1 ]
Fang, Qianqian [1 ]
Chen, Jie [3 ]
Fan, Jizhuang [1 ]
Shan, Debin [2 ]
Zhao, Jie [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin, Peoples R China
[2] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin, Peoples R China
[3] Northeastern Univ, Sch Mech Engn & Automat, Shenyang, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
online payload estimation; parameter difference; dynamic identification; nonlinear friction model; UR10; robot; INERTIAL PARAMETERS; DYNAMIC IDENTIFICATION; MOTION CONTROL; MINIMUM SET; MANIPULATOR; EXCITATION;
D O I
10.1017/S026357472400105X
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Accurate online estimation of the payload parameters benefits robot control. In the existing approaches, however, on the one hand, only the linear friction model was used for online payload identification, which reduced the online estimation accuracy. On the other hand, the estimation models contain much noise because of using actual joint trajectory signals. In this article, a new estimation algorithm based on parameter difference for the payload dynamics is proposed. This method uses a nonlinear friction model for the online payload estimation instead of the traditionally linear one. In addition, it considers the commanded joint trajectory signals as the computation input to reduce the model noise. The main contribution of this article is to derive a symbolic relationship between the parameter difference and the payload parameters and then apply it to the online payload estimation. The robot base parameters without payload were identified offline and regarded as the prior information. The one with payload can be solved online by the recursive least squares method. The dynamics of the payload can be then solved online based on the numerical difference of the two parameter sets. Finally, experimental comparisons and a manual guidance application experiment are shown. The results confirm that our algorithm can improve the online payload estimation accuracy (especially the payload mass) and the manual guidance comfort.
引用
收藏
页码:2690 / 2712
页数:23
相关论文
共 54 条
[1]   Nonlinear model identification and statistical verification using experimental data with a case study of the UR5 manipulator joint parameters [J].
Abedinifar, Masoud ;
Ertugrul, Seniz ;
Arguz, Serdar Hakan .
ROBOTICA, 2023, 41 (04) :1348-1370
[2]  
Abiko S., 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), P2930
[3]  
[Anonymous], 2021, SDU ROBOTICS URRTDE
[4]   Fast ego-motion estimation with multi-rate fusion of inertial and vision [J].
Armesto, Leopoldo ;
Tornero, Josep ;
Vincze, Markus .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2007, 26 (06) :577-589
[5]   Deep Learning Based Robot for Automatically Picking Up Garbage on the Grass [J].
Bai, Jinqiang ;
Lian, Shiguo ;
Liu, Zhaoxiang ;
Wang, Kai ;
Liu, Dijun .
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2018, 64 (03) :382-389
[6]   Keep Rollin'-Whole-Body Motion Control and Planning for Wheeled Quadrupedal Robots [J].
Bjelonic, Marko ;
Bellicoso, C. Dario ;
de Viragh, Yvain ;
Sako, Dhionis ;
Tresoldi, F. Dante ;
Jenelten, Fabian ;
Hutter, Marco .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02) :2116-2123
[7]   Optimal Exciting Dance for Identifying Inertial Parameters of an Anthropomorphic Structure [J].
Bonnet, Vincent ;
Fraisse, Philippe ;
Crosnier, Andre ;
Gautier, Maxime ;
Gonzalez, Alejandro ;
Venture, Gentiane .
IEEE TRANSACTIONS ON ROBOTICS, 2016, 32 (04) :823-836
[8]   Online Inertial Parameter Estimation for Robotic Loaders [J].
Calvo Sanchez, Martin ;
Torres-Torriti, Miguel ;
Auat Cheein, Fernando .
IFAC PAPERSONLINE, 2020, 53 (02) :8763-8770
[9]   Zero Moment Control for Lead-Through Teach Programming and Process Monitoring of a Collaborative Welding Robot [J].
Canfield, Stephen L. ;
Owens, Joseph S. ;
Zuccaro, Stephen G. .
JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2021, 13 (03)
[10]   Modeling and base parameters identification of legged robots [J].
Chang, Xu ;
An, Honglei ;
Ma, Hongxu .
ROBOTICA, 2022, 40 (03) :747-761