Recent advances in lung cancer organoid (tumoroid) research (Review)

被引:0
作者
Zhang, Qiang [1 ]
Zhang, Mingyang [2 ]
机构
[1] Longgang Dist Peoples Hosp Shenzhen, Dept Clin Lab, Shenzhen 518172, Guangdong, Peoples R China
[2] Nanchang Univ, Sch Basic Med Sci, 461 Bayi Ave, Nanchang 330006, Jiangxi, Peoples R China
关键词
lung cancer; organoids; establishment methods; advantages; disadvantages; PATIENT-DERIVED XENOGRAFTS; PRECLINICAL MODELS; CELLS; CULTURE; EVOLUTION; ADENOCARCINOMA; ORGANIZATION; METABOLISM; GENERATION; PACLITAXEL;
D O I
10.3892/etm.2024.12672
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Lung cancer is the most critical type of malignant tumor that threatens human health. Traditional preclinical models have certain defects; for example, they cannot accurately reflect the characteristics of lung cancer and their development is costly and time-consuming. Through self-organization, cancer stem cells (CSCs) generate cancer organoids that have a structure similar to that of lung cancer tissues, overcoming to some extent the aforementioned challenges, thus enabling them to have broader application prospects. Lung cancer organoid (LCO) development methods can be divided into three broad categories based on the source of cells, which include cell lines, patient-derived xenografts and patient tumor tissue/pleural effusion. There are 17 different methods that have been described for the development of LCOs. These methods can be further merged into six categories based on the source of cells, the pre-treatment method used, the composition of the medium and the culture scaffold. These categories are: i) CSCs induced by defined transcription factors; ii) suspension culture; iii) relative optimal culture medium; iv) suboptimal culture medium; v) mechanical digestion and suboptimal culture medium; and vi) hydrogel scaffold. In the current review, the advantages and disadvantages of each of the aforementioned methods are summarized, and references for supporting studies are cited.
引用
收藏
页数:14
相关论文
共 137 条
[1]   Patient-derived xenograft (PDX) models, applications and challenges in cancer research [J].
Abdolahi, Shahrokh ;
Ghazvinian, Zeinab ;
Muhammadnejad, Samad ;
Saleh, Mahshid ;
Asadzadeh Aghdaei, Hamid ;
Baghaei, Kaveh .
JOURNAL OF TRANSLATIONAL MEDICINE, 2022, 20 (01)
[2]   Human Blood Vessel Organoids Penetrate Human Cerebral Organoids and Form a Vessel-Like System [J].
Ahn, Yujin ;
An, Ju-Hyun ;
Yang, Hae-Jun ;
Lee, Dong Gil ;
Kim, Jieun ;
Koh, Hyebin ;
Park, Young-Ho ;
Song, Bong-Seok ;
Sim, Bo-Woong ;
Lee, Hong J. ;
Lee, Jong-Hee ;
Kim, Sun-Uk .
CELLS, 2021, 10 (08)
[3]  
An WF., 2010, Probe Reports from the NIH Molecular Libraries Program
[4]   Development of a Multicellular 3D Tumor Model to Study Cellular Heterogeneity and Plasticity in NSCLC Tumor Microenvironment [J].
Arora, Leena ;
Kalia, Moyna ;
Dasgupta, Suman ;
Singh, Navneet ;
Verma, Anita K. ;
Pal, Durba .
FRONTIERS IN ONCOLOGY, 2022, 12
[5]   Breast cancer models: Engineering the tumor microenvironment [J].
Bahcecioglu, Gokhan ;
Basara, Gozde ;
Ellis, Bradley W. ;
Ren, Xiang ;
Zorlutuna, Pinar .
ACTA BIOMATERIALIA, 2020, 106 :1-21
[6]   A PDX/Organoid Biobank of Advanced Prostate Cancers Captures Genomic and Phenotypic Heterogeneity for Disease Modeling and Therapeutic Screening [J].
Beshiri, Michael L. ;
Tice, Caitlin M. ;
Tran, Crystal ;
Nguyen, Holly M. ;
Sowalsky, Adam G. ;
Agarwal, Supreet ;
Jansson, Keith H. ;
Yang, Qi ;
McGowen, Kerry M. ;
Yin, JuanJuan ;
Alilin, Aian Neil ;
Karzai, Fatima H. ;
Dahut, William L. ;
Corey, Eva ;
Kelly, Kathleen .
CLINICAL CANCER RESEARCH, 2018, 24 (17) :4332-4345
[7]   Lung adenocarcinoma organoids harboring EGFR 19Del and L643V double mutations respond to osimertinib and gefitinib A case report [J].
Bie, Yanan ;
Wang, Jin ;
Xiong, Linmin ;
Wang, Dong ;
Liao, Jing ;
Zhang, Yelin ;
Lin, Hang .
MEDICINE, 2021, 100 (11) :E24793
[8]   Engineering Stem Cell Self-organization to Build Better Organoids [J].
Brassard, Jonathan A. ;
Lutolf, Matthias P. .
CELL STEM CELL, 2019, 24 (06) :860-876
[9]   Human primary liver cancer-derived organoid cultures for disease modeling and drug screening [J].
Broutier, Laura ;
Mastrogiovanni, Gianmarco ;
Verstegen, Monique M. A. ;
Francies, Hayley E. ;
Gavarro, Lena Morrill ;
Bradshaw, Charles R. ;
Allen, George E. ;
Arnes-Benito, Robert ;
Sidorova, Olga ;
Gaspersz, Marcia P. ;
Georgakopoulos, Nikitas ;
Koo, Bon-Kyoung ;
Dietmann, Sabine ;
Davies, Susan E. ;
Praseedom, Raaj K. ;
Lieshout, Ruby ;
IJzermans, Jan N. M. ;
Wigmore, Stephen J. ;
Saeb-Parsy, Kourosh ;
Garnett, Mathew J. ;
van der Laan, Luc J. W. ;
Huch, Meritxell .
NATURE MEDICINE, 2017, 23 (12) :1424-+
[10]   Tumor organoid-T-cell coculture systems [J].
Cattaneo, Chiara M. ;
Dijkstra, Krijn K. ;
Fanchi, Lorenzo F. ;
Kelderman, Sander ;
Kaing, Sovann ;
van Rooij, Nienke ;
van den Brink, Stieneke ;
Schumacher, Ton N. ;
Voest, Emile E. .
NATURE PROTOCOLS, 2020, 15 (01) :15-39