High-quality Ge/SiGe heterostructure with atomically sharp interface grown by molecular beam epitaxy

被引:0
|
作者
Zhang, Jie-yin [1 ,2 ,3 ,4 ,5 ]
Ming, Ming [3 ,5 ]
Wang, Jian-huan [1 ,2 ,3 ,4 ]
Huang, Ding-ming [1 ,2 ,3 ,4 ]
Gao, Han [1 ,2 ]
Chu, Yi-xin [3 ]
Fu, Bin-xiao [5 ]
Xu, H. Q. [1 ,2 ,4 ]
Zhang, Jian-jun [3 ,5 ]
机构
[1] Peking Univ, Beijing Key Lab Quantum Devices, Key Lab Phys & Chem Nanodevices, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Elect, Beijing 100871, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Hefei Natl Lab, Beijing 100190, Peoples R China
[4] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[5] Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
基金
中国国家自然科学基金;
关键词
MOBILITY-LIMITING MECHANISMS; 2-DIMENSIONAL HOLE GAS; QUANTUM; MAGNETOTRANSPORT; DEFECTS;
D O I
10.1063/5.0210639
中图分类号
O59 [应用物理学];
学科分类号
摘要
Germanium is a versatile material for realization of spin and topological quantum computing. Here, we report on the epitaxial growth of an undoped Ge/SiGe heterostructure in which a hole quantum well is formed in the sandwiched Ge layer. The heterostructure is grown on Si (001) via molecular beam epitaxy (MBE). Atomic force microscopy characterizations display a flat surface with a root mean square roughness of 0.956 nm, and spherical aberration corrected transmission electron microscopy data show a sharp interface with a characteristic length of 0.49 nm. A mobility of up to 1.2 x 10(5) cm(2) V-1 s(-1) was achieved in the SiGe/Ge/SiGe two-dimensional hole gas (2DHG). The low percolation density of 3.70 x 10(10) cm(-2), light effective mass of 0.079 m(0) (where m(0) is the free electron mass), and large effective g-factor of 9.5 were obtained. These results show the potential of MBE-grown Ge 2DHG for semiconductor quantum computing.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] High-quality GaN grown by molecular beam epitaxy on Ge(001)
    Siegle, H
    Kim, Y
    Sudhir, GS
    Krüger, J
    Perlin, P
    Ager, JW
    Kisielowski, C
    Weber, ER
    WIDE-BANDGAP SEMICONDUCTORS FOR HIGH-POWER, HIGH-FREQUENCY AND HIGH-TEMPERATURE APPLICATIONS-1999, 1999, 572 : 451 - 456
  • [2] Atomically sharp features grown by silicon molecular beam epitaxy
    Hobart, KD
    Twigg, ME
    Gray, HF
    Shaw, JL
    Thompson, PE
    Kub, FJ
    Park, D
    IVMC '96 - 9TH INTERNATIONAL VACUUM MICROELECTRONICS CONFERENCE, TECHNICAL DIGEST, 1996, : 463 - 467
  • [3] PHOTOLUMINESCENCE OF HIGH-QUALITY SIGE QUANTUM-WELLS GROWN BY MOLECULAR-BEAM EPITAXY
    WACHTER, M
    SCHAFFLER, F
    HERZOG, HJ
    THONKE, K
    SAUER, R
    APPLIED PHYSICS LETTERS, 1993, 63 (03) : 376 - 378
  • [4] HIGH-QUALITY INP GROWN BY MOLECULAR-BEAM EPITAXY
    TSANG, WT
    MILLER, RC
    CAPASSO, F
    BONNER, WA
    APPLIED PHYSICS LETTERS, 1982, 41 (05) : 467 - 469
  • [5] High-quality Ge1-xSnx alloys grown on Ge(001) substrates by molecular beam epitaxy
    Su Shao-Jian
    Zhang Dong-Liang
    Zhang Guang-Ze
    Xue Chun-Lai
    Cheng Bu-Wen
    Wang Qi-Ming
    ACTA PHYSICA SINICA, 2013, 62 (05)
  • [6] High-quality InAs homoepitaxial layers grown by molecular beam epitaxy
    Zhou, Hao
    Chen, Yiqiao
    Liu, Chang
    JOURNAL OF CRYSTAL GROWTH, 2025, 650
  • [7] Photoluminescence of high-quality AlGaAs layers grown by molecular-beam epitaxy
    Zhuravlev, KS
    Toropov, AI
    Shamirzaev, TS
    Bakarov, AK
    APPLIED PHYSICS LETTERS, 2000, 76 (09) : 1131 - 1133
  • [8] Polarity of high-quality indium nitride grown by RF molecular beam epitaxy
    Saito, Y
    Tanabe, Y
    Yamaguchi, T
    Teraguchi, N
    Suzuki, A
    Araki, T
    Nanishi, Y
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2001, 228 (01): : 13 - 16
  • [9] HIGH-QUALITY INP GROWN BY CHEMICAL BEAM EPITAXY
    ROTHFRITZ, H
    TRANKLE, G
    MULLER, R
    WEIMANN, G
    JOURNAL OF CRYSTAL GROWTH, 1992, 120 (1-4) : 130 - 134
  • [10] High quality atomically thin PtSe2 films grown by molecular beam epitaxy
    Yan, Mingzhe
    Wang, Eryin
    Zhou, Xue
    Zhang, Guangqi
    Zhang, Hongyun
    Zhang, Kenan
    Yao, Wei
    Lu, Nianpeng
    Yang, Shuzhen
    Wu, Shilong
    Yoshikawa, Tomoki
    Miyamoto, Koji
    Okuda, Taichi
    Wu, Yang
    Yu, Pu
    Duan, Wenhui
    Zhou, Shuyun
    2D MATERIALS, 2017, 4 (04):