LARGE FOURIER COEFFICIENTS OF HALF-INTEGER WEIGHT MODULAR FORMS

被引:0
作者
Gun, S. [1 ]
Kohnen, W. [2 ]
Soundararajan, K. [3 ]
机构
[1] HBNI, Inst Math Sci, CIT Campus, Chennai 600113, India
[2] Heidelberg Univ, Math Inst, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[3] Stanford Univ, 450 Jane Stanford Way, Bldg 380, Stanford, CA 94305 USA
关键词
EXTREME VALUES; TWISTS; SUMS;
D O I
10.1353/ajm.2024.a932437
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is concerned with the Fourier coefficients of cusp forms (not necessarily eigenforms) of half-integer weight lying in the plus space. We give a soft proof that there are infinitely many fundamental discriminants D such that the Fourier coefficients evaluated at D are non-zero. By adapting the resonance method, we also demonstrate that such Fourier coefficients must take quite large values.
引用
收藏
页码:1169 / 1191
页数:24
相关论文
共 25 条