Transforming Healthcare: The AI Revolution in the Comprehensive Care of Hypertension

被引:4
作者
Alam, Sreyoshi F. [1 ]
Gonzalez Suarez, Maria L. [1 ]
机构
[1] Mayo Clin, Nephrol & Hypertens, Rochester, MN 55905 USA
关键词
artificial intelligence; deep learning; machine learning; hypertension; ARTIFICIAL-INTELLIGENCE MODEL; ACCURACY; SOCIETY;
D O I
10.3390/clinpract14040109
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
This review explores the transformative role of artificial intelligence (AI) in hypertension care, summarizing and analyzing published works from the last three years in this field. Hypertension contributes to a significant healthcare burden both at an individual and global level. We focus on five key areas: risk prediction, diagnosis, education, monitoring, and management of hypertension, supplemented with a brief look into the works on hypertensive disease of pregnancy. For each area, we discuss the advantages and disadvantages of integrating AI. While AI, in its current rudimentary form, cannot replace sound clinical judgment, it can still enhance faster diagnosis, education, prevention, and management. The integration of AI in healthcare is poised to revolutionize hypertension care, although careful implementation and ongoing research are essential to mitigate risks.
引用
收藏
页码:1357 / 1374
页数:18
相关论文
共 53 条
[1]   Epigenetic Signatures in Hypertension [J].
Alfonso Perez, Gerardo ;
Delgado Martinez, Victor .
JOURNAL OF PERSONALIZED MEDICINE, 2023, 13 (05)
[2]   The role of artificial intelligence in hypertensive disorders of pregnancy: towards personalized healthcare [J].
Alkhodari, Mohanad ;
Xiong, Zhaohan ;
Khandoker, Ahsan H. ;
Hadjileontiadis, Leontios J. ;
Leeson, Paul ;
Lapidaire, Winok .
EXPERT REVIEW OF CARDIOVASCULAR THERAPY, 2023, :531-543
[3]  
Alsharqi Maryam, 2023, Eur Heart J Imaging Methods Pract, V1, pqyad029, DOI [10.1093/ehjimp/qyad029, 10.1093/ehjimp/qyad029]
[4]   Uses and opportunities for machine learning in hypertension research [J].
Amaratunga, Dhammika ;
Cabrera, Javier ;
Sargsyan, Davit ;
Kostis, John B. ;
Zinonos, Stavros ;
Kostis, William J. .
INTERNATIONAL JOURNAL CARDIOLOGY HYPERTENSION, 2020, 5
[5]   Non-Invasive Blood Pressure Sensing via Machine Learning [J].
Attivissimo, Filippo ;
D'Alessandro, Vito Ivano ;
De Palma, Luisa ;
Lanzolla, Anna Maria Lucia ;
Di Nisio, Attilio .
SENSORS, 2023, 23 (19)
[6]   An imbalance-aware deep neural network for early prediction of preeclampsia [J].
Bennett, Rachel ;
Mulla, Zuber D. ;
Parikh, Pavan ;
Hauspurg, Alisse ;
Razzaghi, Talayeh .
PLOS ONE, 2022, 17 (04)
[7]  
Breiman L., 1984, CLASSIFICATION REGRE, DOI DOI 10.1201/9781315139470
[8]   Prediction of Adverse Outcomes in De Novo Hypertensive Disorders of Pregnancy: Development and Validation of Maternal and Neonatal Prognostic Models [J].
Chen, Junjun ;
Ji, Yuelong ;
Su, Tao ;
Jin, Ma ;
Yuan, Zhichao ;
Peng, Yuanzhou ;
Zhou, Shuang ;
Bao, Heling ;
Luo, Shusheng ;
Wang, Hui ;
Liu, Jue ;
Han, Na ;
Wang, Hai-Jun .
HEALTHCARE, 2022, 10 (11)
[9]   Non-invasive arterial blood pressure measurement and SpO2 estimation using PPG signal: a deep learning framework [J].
Chu, Yan ;
Tang, Kaichen ;
Hsu, Yu-Chun ;
Huang, Tongtong ;
Wang, Dulin ;
Li, Wentao ;
Savitz, Sean I. I. ;
Jiang, Xiaoqian ;
Shams, Shayan .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
[10]   Identifying Medication-Related Intents From a Bidirectional Text Messaging Platform for Hypertension Management Using an Unsupervised Learning Approach: Retrospective Observational Pilot Study [J].
Davoudi, Anahita ;
Lee, Natalie S. ;
Luong, ThaiBinh ;
Delaney, Timothy ;
Asch, Elizabeth ;
Chaiyachati, Krisda ;
Mowery, Danielle .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2022, 24 (06)