Optical soliton solutions and modulation instability for unstable conformable Schrödinger model

被引:0
|
作者
Nadeem, Muhammad [1 ]
Arqub, Omar Abu [2 ]
Alotaibi, Fawziah M. [3 ]
机构
[1] Qujing Normal Univ, Sch Math & Stat, Qujing 655011, Peoples R China
[2] Al Balqa Appl Univ, Fac Sci, Dept Math, Salt 19117, Jordan
[3] Taif Univ, Dept Math, Turabah Univ Coll, POB 11099, Taif 21944, Saudi Arabia
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2025年 / 36卷 / 01期
关键词
Unstable Schr & ouml; dinger model; conformable fractional derivative; modified Sardar-sub equation technique; optical soliton solutions; stability analysis; APPROXIMATE SOLUTION; STABILITY ANALYSIS; EQUATION;
D O I
10.1142/S0129183124501754
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The unstable time fractional Schr & ouml;dinger model (UTFSM) is studied through the development of disturbances in marginally stable or unstable media. A modified Sardar-sub equation technique (MSSE) for a conformable fractional-order nonlinear evolution model is presented in this paper. The objective here is to construct new wave solutions for UTFSM. These solutions have particular relevance in quantum physics and assume several forms such as rational, exponential, trigonometric and hyperbolic functions, as well as combo solutions. This technique produces various shapes of dark, kink-type solitons and periodic solitary waves by setting proper parametric values. These discrete physical frameworks contribute to an understanding from analysis of unstable dynamical models. Additionally, we investigate modulation instability and stability analysis to ensure that obtained solutions are highly stable. The multiplicity of waves and solutions emphasizes how this technique can be used for different nonlinear fractional models in quantum physics and other areas.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] On study of modulation instability and optical soliton solutions: the chiral nonlinear Schrödinger dynamical equation
    S. U. Rehman
    Aly R. Seadawy
    M. Younis
    S. T. R. Rizvi
    Optical and Quantum Electronics, 2021, 53
  • [2] Soliton solutions of Sasa–Satsuma nonlinear Schrödinger model and construction of modulation instability analysis
    Aly R. Seadawy
    Naila Nasreen
    Saad Althobaiti
    Samy Sayed
    Anjan Biswas
    Optical and Quantum Electronics, 2021, 53
  • [3] Modulation instability analysis and soliton solutions of an integrable coupled nonlinear Schrödinger system
    Ding Guo
    Shou-Fu Tian
    Tian-Tian Zhang
    Jin Li
    Nonlinear Dynamics, 2018, 94 : 2749 - 2761
  • [4] The modify unstable nonlinear Schrödinger dynamical equation and its optical soliton solutions
    E. Tala-Tebue
    Aly R. Seadawy
    Z. I. Djoufack
    Optical and Quantum Electronics, 2018, 50
  • [5] Modulation instability and optical wave profiles for the conformable Schrödinger-Poisson dynamical system
    Yasin, Muhammad Waqas
    Baber, Muhammad Zafarullah
    Munir, Muskan
    Hassaballa, Abaker A.
    Inc, Mustafa
    Iqbal, Muhammad Sajid
    Rezapour, Shahram
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (08)
  • [6] Modulation instability, stability analysis and soliton solutions to the resonance nonlinear Schrödinger model with Kerr law nonlinearity
    Kalim U. Tariq
    Mustafa Inc
    S. M. Raza Kazmi
    Reem K. Alhefthi
    Optical and Quantum Electronics, 2023, 55
  • [7] Soliton solutions, stability, and modulation instability of the (2+1)-dimensional nonlinear hyperbolic Schrödinger model
    Adel, M.
    Tariq, Kalim U.
    Ahmad, Hijaz
    Kazmi, S. M. Raza
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (02)
  • [8] Variational principle for generalized unstable and modify unstable nonlinear Schrödinger dynamical equations and their optical soliton solutions
    Seadawy, Aly R.
    Alsaedi, Bayan A.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (05)
  • [9] Modulation instability, conservation laws and soliton solutions for an inhomogeneous discrete nonlinear Schrödinger equation
    Hui-Qin Hao
    Rui Guo
    Jian-Wen Zhang
    Nonlinear Dynamics, 2017, 88 : 1615 - 1622
  • [10] Exact traveling wave solutions and soliton solutions of conformable M-fractional modified nonlinear Schrödinger model
    Das N.
    Ray S.S.
    Optik, 2023, 287