Large-deviations approach to thermalization: the case of harmonic chains with conservative noise

被引:1
作者
Lepri, Stefano [1 ,2 ]
机构
[1] CNR, Ist Sistemi Complessi, Via Madonna Piano 10, I-50019 Sesto Fiorentino, Italy
[2] Ist Nazl Fis Nucl, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2024年 / 2024卷 / 07期
关键词
large deviations in non-equilibrium systems; thermalization; BOLTZMANN-EQUATION; ENERGY-TRANSPORT; SYSTEMS;
D O I
10.1088/1742-5468/ad6135
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We investigate the possibility of characterizing the different thermalization pathways through a large-deviation approach. Specifically, we consider clean, disordered and quasi-periodic harmonic chains under energy and momentum-conserving noise. For their associated master equations, describing the dynamics of normal modes energies, we compute the fluctuations of activity and dynamical entropy in the corresponding biased ensembles. First-order dynamical phase transition are found that originates from different activity regions in action space. At the transitions, the steady-state in the biased ensembles changes from extended to localized, yielding a kind of condensation in normal-modes space. For the disordered and quasi-periodic models, we argue that the phase-diagram has a critical point at a finite value of the disorder or potential strength.
引用
收藏
页数:19
相关论文
共 65 条
[1]  
Andreucci Francesco., 2023, Phys. Rev. E, V108, DOI DOI 10.1103/PHYSREVE.108.024115
[2]  
Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
[3]   Statistical Mechanics of an Integrable System [J].
Baldovin, Marco ;
Vulpiani, Angelo ;
Gradenigo, Giacomo .
JOURNAL OF STATISTICAL PHYSICS, 2021, 183 (03)
[4]   Momentum conserving model with anomalous thermal conductivity in low dimensional systems [J].
Basile, Giada ;
Bernardin, Cedric ;
Olla, Stefano .
PHYSICAL REVIEW LETTERS, 2006, 96 (20)
[5]  
Basile G, 2016, LECT NOTES PHYS, V921, P215, DOI 10.1007/978-3-319-29261-8_5
[6]   Energy Transport in Stochastically Perturbed Lattice Dynamics [J].
Basile, Giada ;
Olla, Stefano ;
Spohn, Herbert .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (01) :171-203
[7]   Weak chaos in the disordered nonlinear Schrodinger chain: Destruction of Anderson localization by Arnold diffusion [J].
Basko, D. M. .
ANNALS OF PHYSICS, 2011, 326 (07) :1577-1655
[8]   The Fermi-Pasta-Ulam Problem and Its Underlying Integrable Dynamics [J].
Benettin, G. ;
Christodoulidi, H. ;
Ponno, A. .
JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (02) :195-212
[9]   Time-Scales to Equipartition in the Fermi-Pasta-Ulam Problem: Finite-Size Effects and Thermodynamic Limit [J].
Benettin, G. ;
Ponno, A. .
JOURNAL OF STATISTICAL PHYSICS, 2011, 144 (04) :793-812
[10]   Thermal Conductivity for a Noisy Disordered Harmonic Chain [J].
Bernardin, Cedric .
JOURNAL OF STATISTICAL PHYSICS, 2008, 133 (03) :417-433