Fabrication of Poly Lactic-co-Glycolic Acid Microneedles for Sustained Delivery of Lipophilic Peptide-Carfilzomib

被引:1
|
作者
Shrestha, Nisha [1 ]
Karve, Tanvi [1 ]
Kipping, Thomas [2 ]
Banga, Ajay K. [1 ]
机构
[1] Mercer Univ, Coll Pharm, Ctr Drug Delivery Res, Dept Pharmaceut Sci, Atlanta, GA 30341 USA
[2] MilliporeSigma Business Merck KGaA, Frankfurter Str 250, D-64293 Darmstadt, Germany
关键词
microneedles; lipophilic peptide; drug delivery; transdermal; sustained release; PLGA types; TRANSDERMAL DELIVERY; DRUG-DELIVERY; CONTROLLED-RELEASE; LOADED PLGA; NANOPARTICLES; DEGRADATION; FORMULATION; SYSTEM;
D O I
10.1021/acs.molpharmaceut.4c00593
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Transdermal drug delivery (TDD) is an attractive route of administration, providing several advantages, especially over oral and parenteral routes. However, TDD is significantly restricted due to the barrier imposed by the uppermost layer of the skin, the stratum corneum (SC). Microneedles is a physical enhancement technique that efficiently pierces the SC and facilitates the delivery of both lipophilic and hydrophilic molecules. Dissolving microneedles is a commonly used type that is fabricated utilizing various biodegradable and biocompatible polymers, such as polylactic acid, polyglycolic acid, or poly(lactide-co-glycolide) (PLGA). Such polymers also promote the prolonged release of the drug due to the slow degradation of the polymer matrix following its insertion. We selected carfilzomib, a small therapeutic peptide (M-W: 719.924 g/mol, log P 4.19), as a model drug to fabricate a microneedle-based sustained delivery system. This study is a proof-of-concept investigation in which we fabricated PLGA microneedles using four types of PLGA (50-2A, 50-5A, 75-5A, and 50-7P) to evaluate the feasibility of long-acting transdermal delivery of carfilzomib. Micromolding technique was used to fabricate the PLGA microneedles and characterization tests, including Fourier transform infrared spectroscopy, insertion capability using the skin simulant Parafilm model, histological evaluation, scanning electron microscopy, and confocal microscopy were conducted. In vitro release and permeation testing were conducted in vertical Franz diffusion cells. N-methyl pyrrolidone was utilized as the organic solvent and microneedles were solidified in controlled conditions, which led to good mechanical strength. Both in vitro release and permeation testing showed sustained profiles of carfilzomib over 7 days. The release and permeation were significantly influenced by the molecular weight of PLGA and the lipophilic properties of carfilzomib.
引用
收藏
页码:5192 / 5204
页数:13
相关论文
共 50 条
  • [1] Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly (Lactic-co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research
    Lu, Yue
    Cheng, Dongfang
    Niu, Baohua
    Wang, Xiuzhi
    Wu, Xiaxia
    Wang, Aiping
    PHARMACEUTICALS, 2023, 16 (03)
  • [2] Poly(lactic-co-glycolic) Acid (PLGA) Nanoparticles and Transdermal Drug Delivery: An Overview
    Kumar, Lalit
    Kukreti, Gauree
    Rana, Ritesh
    Chaurasia, Himanshu
    Sharma, Anchal
    Sharma, Neelam
    Komal
    CURRENT PHARMACEUTICAL DESIGN, 2023, 29 (37) : 2940 - 2953
  • [3] Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier
    Makadia, Hirenkumar K.
    Siegel, Steven J.
    POLYMERS, 2011, 3 (03) : 1377 - 1397
  • [4] Hybrid poly(lactic-co-glycolic acid) nanoparticles: design and delivery prospectives
    Pandita, Deepti
    Kumar, Sandeep
    Lather, Viney
    DRUG DISCOVERY TODAY, 2015, 20 (01) : 95 - 104
  • [5] Poly(lactic-co-glycolic) acid nanoparticles with thermoresponsive shell for sustained release of dexamethasone
    Constantin, Marieta
    Bucatariu, Sanda
    Secarescu, Liviu
    Coroaba, Adina
    Ursu, Elena-Laura
    Fundueanu, Gheorghe
    REACTIVE & FUNCTIONAL POLYMERS, 2025, 206
  • [6] Poly(Lactic-co-Glycolic) Acid as a Carrier for Imaging Contrast Agents
    Doiron, Amber L.
    Homan, Kimberly A.
    Emelianov, Stanislav
    Brannon-Peppas, Lisa
    PHARMACEUTICAL RESEARCH, 2009, 26 (03) : 674 - 682
  • [7] Experimental Studies and Modeling of the Degradation Process of Poly(Lactic-co-Glycolic Acid) Microspheres for Sustained Protein Release
    Netti, Paolo Antonio
    Biondi, Marco
    Frigione, Mariaenrica
    POLYMERS, 2020, 12 (09)
  • [8] Optimization of Layered Dissolving Microneedle for Sustained Drug Delivery Using Heat-Melted Poly(Lactic-Co-glycolic Acid)
    Lee, Chisong
    Kim, Jinkyung
    Um, Daniel Junmin
    Kim, Youseong
    Min, Hye Su
    Shin, Jiwoo
    Nam, Jee Hye
    Kang, Geonwoo
    Jang, Mingyu
    Yang, Huisuk
    Jung, Hyungil
    PHARMACEUTICS, 2021, 13 (07)
  • [9] Sustained delivery of timolol maleate from poly(lactic-co-glycolic acid)/poly(lactic acid) microspheres for over 3 months
    Bertram, James P.
    Saluja, Sandeep S.
    McKain, Jodi
    Lavik, Erin B.
    JOURNAL OF MICROENCAPSULATION, 2009, 26 (01) : 18 - 26
  • [10] Antibiotic delivery based on poly(lactic-co-glycolic) acid and natural polymers: a biocomposite strategy
    Karp, Federico
    Mengatto, Luciano N.
    Satler, Florencia S.
    Turino, Ludmila N.
    Estenoz, Diana A.
    Luna, Julio A.
    IRANIAN POLYMER JOURNAL, 2023, 32 (03) : 299 - 312