An emerging network for COVID-19 CT-scan classification using an ensemble deep transfer learning model

被引:3
|
作者
Yousefpanah, Kolsoum [1 ]
Ebadi, M. J. [2 ]
Sabzekar, Sina [3 ]
Zakaria, Nor Hidayati [4 ]
Osman, Nurul Aida [5 ]
Ahmadian, Ali [6 ,7 ]
机构
[1] Univ Guilan, Dept Stat, Rasht, Iran
[2] Int Telematic Univ Uninettuno, Sect Math, Corso Vittorio Emanuele 2, I-00186 Romae, Italy
[3] Sharif Univ Technol, Civil Engn Dept, Tehran, Iran
[4] Univ Teknol Malaysia, Azman Hashim Int Business Sch, Kuala Lumpur 54100, Malaysia
[5] Univ Teknol Petronas, Fac Sci & Informat Technol, Comp & Informat Sci Dept, Seri Iskandar, Malaysia
[6] Mediterranea Univ Reggio Calabria, Decis Lab, Reggio Di Calabria, Italy
[7] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
关键词
COVID-19; Deep learning; Machine learning; Artificial intelligence; Soft Voting; NEURAL-NETWORKS; OUTBREAK; IMAGES;
D O I
10.1016/j.actatropica.2024.107277
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
Over the past few years, the widespread outbreak of COVID-19 has caused the death of millions of people worldwide. Early diagnosis of the virus is essential to control its spread and provide timely treatment. Artificial intelligence methods are often used as powerful tools to reach a COVID-19 diagnosis via computed tomography (CT) samples. In this paper, artificial intelligence-based methods are introduced to diagnose COVID-19. At first, a network called CT6-CNN is designed, and then two ensemble deep transfer learning models are developed based on Xception, ResNet-101, DenseNet-169, and CT6-CNN to reach a COVID-19 diagnosis by CT samples. The publicly available SARS-CoV-2 CT dataset is utilized for our implementation, including 2481 CT scans. The dataset is separated into 2108, 248, and 125 images for training, validation, and testing, respectively. Based on experimental results, the CT6-CNN model achieved 94.66% accuracy, 94.67% precision, 94.67% sensitivity, and 94.65% F1-score rate. Moreover, the ensemble learning models reached 99.2% accuracy. Experimental results affirm the effectiveness of designed models, especially the ensemble deep learning models, to reach a diagnosis of COVID-19.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Deep Learning for The Detection of COVID-19 Using Transfer Learning and Model Integration
    Wang, Ningwei
    Liu, Hongzhe
    Xu, Cheng
    PROCEEDINGS OF 2020 IEEE 10TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2020), 2020, : 281 - 284
  • [32] A Deep Learning and Handcrafted Based Computationally Intelligent Technique for Effective COVID-19 Detection from X-ray/CT-scan Imaging
    Habib, Mohammed
    Ramzan, Muhammad
    Khan, Sajid Ali
    JOURNAL OF GRID COMPUTING, 2022, 20 (03)
  • [33] A Novel Weighted Consensus Machine Learning Model for COVID-19 Infection Classification Using CT Scan Images
    Bondugula, Rohit Kumar
    Udgata, Siba K.
    Bommi, Nitin Sai
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (08) : 11039 - 11050
  • [34] A Novel Weighted Consensus Machine Learning Model for COVID-19 Infection Classification Using CT Scan Images
    Rohit Kumar Bondugula
    Siba K. Udgata
    Nitin Sai Bommi
    Arabian Journal for Science and Engineering, 2023, 48 : 11039 - 11050
  • [35] Diagnosis of COVID-19 Using Machine Learning and Deep Learning: A Review
    Mondal, M. Rubaiyat Hossain
    Bharati, Subrato
    Podder, Prajoy
    CURRENT MEDICAL IMAGING, 2021, 17 (12) : 1403 - 1418
  • [36] Automatic Diagnosis of Covid-19 Related Pneumonia from CXR and CT-Scan Images
    Kumar, Naresh
    Hashmi, Adeel
    Gupta, Manish
    Kundu, Ankit
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2022, 12 (01) : 7993 - 7997
  • [37] Evaluation of chest CT-scan appearances of COVID-19 according to RSNA classification system
    Arian, Arvin
    Gity, Masoumeh
    Kolahi, Shahriar
    Khani, Sina
    Ahmadi, Mehran Arab
    Salehi, Mohammadreza
    Delazar, Sina
    JOURNAL OF FAMILY MEDICINE AND PRIMARY CARE, 2022, 11 (08) : 4410 - 4416
  • [38] COVID-19 classification based on a deep learning and machine learning fusion technique using chest CT images
    Gerges M. Salama
    Asmaa Mohamed
    Mahmoud Khaled Abd-Ellah
    Neural Computing and Applications, 2024, 36 : 5347 - 5365
  • [39] COVID-19 classification based on a deep learning and machine learning fusion technique using chest CT images
    Salama, Gerges M.
    Mohamed, Asmaa
    Abd-Ellah, Mahmoud Khaled
    NEURAL COMPUTING & APPLICATIONS, 2023, 36 (10) : 5347 - 5365
  • [40] Diagnosis of COVID-19 using CT scan images and deep learning techniques
    Shah, Vruddhi
    Keniya, Rinkal
    Shridharani, Akanksha
    Punjabi, Manav
    Shah, Jainam
    Mehendale, Ninad
    EMERGENCY RADIOLOGY, 2021, 28 (03) : 497 - 505