Self-Training-Based Unsupervised Domain Adaptation for Object Detection in Remote Sensing Imagery

被引:0
|
作者
Luo, Sihao [1 ]
Ma, Li [1 ]
Yang, Xiaoquan [2 ,3 ]
Luo, Dapeng [1 ]
Du, Qian [4 ]
机构
[1] China Univ Geosci, Sch Mech Engn & Elect Informat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] JITRI, HUST, Suzhou Inst Brainmat, Suzhou 215123, Peoples R China
[4] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Detectors; Training; Remote sensing; Object detection; Reliability; Computer network reliability; Accuracy; Domain adaptation; object detection; remote sensing imagery; self-training (ST); CROSS-DOMAIN; NETWORK;
D O I
10.1109/TGRS.2024.3457789
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose a novel two-stage cross-domain self-training (CDST) framework for unsupervised domain adaptive object detection in remote sensing. The first stage introduces the generative adversarial network (GAN)-based domain transfer strategy to preliminarily mitigate the domain shift for higher quality initial pseudo-labeled images, which utilizes the CycleGAN to transfer source-domain images to match the target domain. Moreover, the key issue in tailoring the self-training (ST) to unsupervised domain adaptive detection lies in the quality of pseudo-labeled images. To select high-quality pseudo-labeled images under the domain-shift circumstance, we propose hard example selection-based self-training (HES-ST) with the three key steps: 1) detector-based example division (DED), which divides the detected examples into easy examples and hard ones according to their confidence level; 2) confidence and relation joint score (CRJS)-based hard example selection, which combines two reliability levels calculated, respectively, by the detector and relation network (RN) module to mine reliable examples; and 3) union example (UE)-based training image selection, which combines both easy and reliable hard examples to choose target-domain images that may contain fewer detection errors. The experimental results on several remote sensing datasets demonstrate the effectiveness of our proposed framework. Compared with the baseline detector trained on the source dataset, our approach consistently improves the detection performance on the target dataset by 15.7%-16.8% mean average precision (mAP) and achieves the state-of-the-art (SOTA) results under various domain adaptation scenarios.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Locality Preservation for Unsupervised Multimodal Change Detection in Remote Sensing Imagery
    Sun, Yuli
    Lei, Lin
    Guan, Dongdong
    Kuang, Gangyao
    Li, Zhang
    Liu, Li
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 15
  • [32] Domain Generalized Object Detection for Remote Sensing Images
    Durakli, Efkan
    Aptoula, Erchan
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [33] Weakly Semantic Based Attention Network for Interpretable Object Detection in Remote Sensing Imagery
    Zhou Y.
    Chen S.-L.
    Zhao J.-Q.
    Zhang D.
    Wang H.-Z.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2021, 49 (04): : 679 - 689
  • [34] Object Detection in Remote Sensing Imagery Based on Prototype Learning Network With Proposal Relation
    Ni, Kang
    Ma, Tengfei
    Zheng, Zhizhong
    Wang, Peng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [35] Remote Sensing Small Object Detection Based on Multicontextual Information Aggregation
    Wang, Jingyu
    Ma, Mingrui
    Huang, Pengfei
    Mei, Shaohui
    Zhang, Liang
    Wang, Hongmei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 8248 - 8260
  • [36] Composite Perception and Multiscale Fusion Network for Arbitrary-Oriented Object Detection in Remote Sensing Imagery
    Bai, Peng
    Xia, Ying
    Feng, Jiangfan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [37] Cross-Layer Attention Network for Small Object Detection in Remote Sensing Imagery
    Li, Yangyang
    Huang, Qin
    Pei, Xuan
    Chen, Yanqiao
    Jiao, Licheng
    Shang, Ronghua
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 2148 - 2161
  • [38] YOLOrs: Object Detection in Multimodal Remote Sensing Imagery
    Sharma, Manish
    Dhanaraj, Mayur
    Karnam, Srivallabha
    Chachlakis, Dimitris G.
    Ptucha, Raymond
    Markopoulos, Panos P.
    Saber, Eli
    Markopoulos, Panos P. (pxmeee@rit.edu), 1600, Institute of Electrical and Electronics Engineers Inc. (14): : 1497 - 1508
  • [39] YOLOrs: Object Detection in Multimodal Remote Sensing Imagery
    Sharma, Manish
    Dhanaraj, Mayur
    Karnam, Srivallabha
    Chachlakis, Dimitris G.
    Ptucha, Raymond
    Markopoulos, Panos P.
    Saber, Eli
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 1497 - 1508
  • [40] Unsupervised Domain Adaptation With Dense-Based Compaction for Hyperspectral Imagery
    Yu, Chunyan
    Liu, Caiyu
    Yu, Haoyang
    Song, Meiping
    Chang, Chein-, I
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 12287 - 12299