Computing the Load Margin of Power Systems Using Golden Jackal Optimization

被引:0
作者
Bento, Murilo E. C. [1 ]
机构
[1] Univ Fed Rio de Janeiro, BR-21941909 Rio De Janeiro, RJ, Brazil
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 13期
基金
巴西圣保罗研究基金会;
关键词
Smart Grid; Power System Stability; Load Margin; Dynamic Security Assessment; Voltage Stability; Small-Signal Stability; Golden Jackal Optimization; AREA DAMPING CONTROLLER; PERMANENT FAILURE; DESIGN;
D O I
10.1016/j.ifacol.2024.07.555
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Load Margin (LM) is an important stability index applied in power systems. The calculation of LM has always been associated with voltage stability studies, but the increase in load can also cause the emergence of poorly damped oscillation modes studied in stability at small signals that can destabilize the power system. This article proposes an optimization model to determine the LM considering jointly the voltage stability and small signal stability thresholds. The bio-inspired algorithm called Golden Jackal Optimization is applied to solve the optimization model. The IEEE 39-bus test system is used for case studies and discussions. Copyright (c) 2024 The Authors.
引用
收藏
页码:644 / 649
页数:6
相关论文
共 58 条
  • [1] Real-Time Control of a Battery Energy Storage System Using a Reconfigurable Synchrophasor-Based Control System
    Adhikari, Prottay M.
    Vanfretti, Luigi
    Chang, Hao
    Kar, Koushik
    [J]. ENERGIES, 2023, 16 (19)
  • [2] GA-Based Voltage Optimization of Distribution Feeder with High-Penetration of DERs Using Megawatt-Scale Units
    Adib, Aswad
    Pinto, Joao Onofre Pereira
    Chinthavali, Madhu S.
    [J]. ENERGIES, 2023, 16 (13)
  • [3] Ajjarapu V, 2007, POWER ELECTRON POWER, P1, DOI 10.1007/978-0-387-32935-2
  • [4] THE CONTINUATION POWER FLOW - A TOOL FOR STEADY-STATE VOLTAGE STABILITY ANALYSIS
    AJJARAPU, V
    CHRISTY, C
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 1992, 7 (01) : 416 - 423
  • [5] Improving Directional Overcurrent Relay Coordination in Distribution Networks for Optimal Operation Using Hybrid Genetic Algorithm with Sequential Quadratic Programming
    Al-Bhadely, Faraj
    Inan, Aslan
    [J]. ENERGIES, 2023, 16 (20)
  • [6] Load Forecasting Based on Genetic Algorithm-Artificial Neural Network-Adaptive Neuro-Fuzzy Inference Systems: A Case Study in Iraq
    AL-Qaysi, Ahmed Mazin Majid
    Bozkurt, Altug
    Ates, Yavuz
    [J]. ENERGIES, 2023, 16 (06)
  • [7] Optimum Scenarios of EV Charging Infrastructure: A Case Study for the Saudi Arabia Market
    Azab, Mohamed
    [J]. ENERGIES, 2023, 16 (13)
  • [8] Bento M.E.C., 2023, In2023InternationalConferenceonPower, Instrumentation, ControlandComputing(PICC), DOI [10.1109/picc57976.2023.10142551, DOI 10.1109/PICC57976.2023.10142551]
  • [9] Bento M.E.C., 2023, In2023IEEEIASGlobalConferenceonEmergingTechnologies(GlobConET), DOI [10.1109/globconet56651.2023.10150160, DOI 10.1109/GLOBCONET56651.2023.10150160]
  • [10] Bento M.E.C., 2023, In2023InternationalConferenceonPower, Instrumentation, ControlandComputing(PICC), DOI [10.1109/picc57976.2023.10142492, DOI 10.1109/PICC57976.2023.10142492]