A Memristor Circuit Implementing Tunable Stochastic Distributions for Bayesian Inference and Monte Carlo Sampling

被引:1
作者
Malik, Adil [1 ]
Papavassiliou, Christos [1 ]
机构
[1] Imperial Coll London, Elect & Elect Engn, London, England
来源
2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024 | 2024年
关键词
Bayesian Inference; Stochasticity; Monte-Carlo; Memristor; Noise; Neural Networks; Feedback; Random Number Generator;
D O I
10.1109/ISCAS58744.2024.10558060
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we present a novel memristive circuit that is capable of generating tunable stochastic distributions. The proposed circuit leverages the inherent read noise of the memristor and utilises feedback to shape its spectrum into achieving control over the output distributions mean and standard deviation. We analyse the relationship between various loop parameters and the output noise characteristics of the circuit. We experimentally build the circuit and investigate the output distributions for a range of circuit parameters. Lastly, we develop the theory, propose a system and demonstrate an example, where such circuits generate tunable distributions in hardware for Bayesian Inference and Monte-Carlo sampling.
引用
收藏
页数:5
相关论文
共 10 条
  • [1] In situ learning using intrinsic memristor variability via Markov chain Monte Carlo sampling
    Dalgaty, Thomas
    Castellani, Niccolo
    Turck, Clement
    Harabi, Kamel-Eddine
    Querlioz, Damien
    Vianello, Elisa
    [J]. NATURE ELECTRONICS, 2021, 4 (02) : 151 - 161
  • [2] Random Telegraph Noise in Metal-Oxide Memristors for True Random Number Generators: A Materials Study
    Li, Xuehua
    Zanotti, Tommaso
    Wang, Tao
    Zhu, Kaichen
    Puglisi, Francesco Maria
    Lanza, Mario
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (27)
  • [3] Bayesian neural networks using magnetic tunnel junction-based probabilistic in-memory computing (vol 4, 1021943, 2022)
    Liu, S.
    Xiao, T. P.
    Kwon, J.
    Debusschere, B. J.
    Agarwal, S.
    Incorvia, J. A. C.
    Bennett, C. H.
    [J]. FRONTIERS IN NANOTECHNOLOGY, 2022, 4
  • [4] Malik Adil, 2023, 2023 30th IEEE International Conference on Electronics, Circuits and Systems (ICECS), P1, DOI 10.1109/ICECS58634.2023.10382731
  • [5] Malik Adil, 2023, 2023 12th International Conference on Modern Circuits and Systems Technologies (MOCAST), P1, DOI 10.1109/MOCAST57943.2023.10176571
  • [6] Malik A., 2023, U.K. Patent, Patent No. [215172GB, 215172]
  • [7] MALISSOVAS A, 2022, 2022 11 INT C MOD CI, DOI DOI 10.1109/SENSORS52175.2022.9967336
  • [8] Stochasticity Modeling in Memristors
    Naous, Rawan
    Al-Shedivat, Maruan
    Salama, Khaled Nabil
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2016, 15 (01) : 15 - 28
  • [9] Peng R. D., 6 4 IMPORTANCE SAMPL
  • [10] Prodromakis T, 2010, IEEE INT SYMP CIRC S, P1520, DOI 10.1109/ISCAS.2010.5537379