Dissolution of g-C3N4 Using Zinc Chloride Molten Salt Hydrates for Nanobelt Fabrication and Photocatalytic H2O2 Production

被引:2
|
作者
Shen, Dazhi [1 ]
Imbault, Alexander Luis [3 ]
Balati, Gulimire [2 ]
Ouyang, Jie [2 ]
Li, Yunhua [2 ]
机构
[1] Minnan Normal Univ, Coll Chem & Environm Sci, Fujian Prov Key Lab Modern Analyt Sci & Separat Te, Zhangzhou 36300, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem & Biochem Engn, Xiamen 361005, Peoples R China
[3] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada
基金
中国国家自然科学基金;
关键词
Carbon nitride; Dissolution; Photocatalysis; H2O2; production; GRAPHITIC CARBON NITRIDE; EXFOLIATION; LIGHT; C3N4; ABSORPTION; NANOSHEETS; EVOLUTION; ZNCL2;
D O I
10.1002/chem.202401847
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphitic-carbon nitride (g-C3N4), a metal-free two-dimensional layered semiconductor material, holds great potential for energy conversion, environmental remediation, and sensing. However, the limited solubility of g-C3N4 in conventional solvents hinders its widespread application. Improving the dissolution of g-C3N4 in the liquid phase is highly desired but challenging. Herein, we report an innovative approach to dissolve g-C3N4 using ZnCl2 molten salt hydrates. The solubility of g-C3N4 in the solution reaches up to 200 mg mL(-1). Density functional theory (DFT) results suggest that ZnCl+H2O is the key species that leads to charge redistribution on g-C3N4 surface and promotes the dissolution of carbon nitride in the solution. Furthermore, through dilution, the dissolved carbon nitride can be effectively recovered while maintaining its intrinsic chemical structure. The resultant regenerated C3N4 (r-C3N4) exhibits nanobelt morphology and demonstrates a substantially improved photocatalytic activity in H2O2 production. The rate of H2O2 production over the r-C3N4 reaches 20,228 mu mol g(-1) h(-1), which is 6.2 times higher than that of pristine g-C3N4. This green and efficient dissolution route of g-C3N4 offers an effective approach for its diverse applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] KNO3-Assisted incorporation of K dopants and N defects into g-C3N4 with enhanced visible light driven photocatalytic H2O2 production
    Yang, Haihua
    Qian, Xiaorong
    Zhang, Na
    Zhang, Li
    Zhou, Minjie
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (48) : 22591 - 22601
  • [32] Preparation of N-vacancy-doped g-C3N4 with outstanding photocatalytic H2O2 production ability by dielectric barrier discharge plasma treatment
    Li, Xuhe
    Zhang, Jian
    Zhou, Feng
    Zhang, Hongliang
    Bai, Jin
    Wang, Yanjuan
    Wang, Haiyan
    CHINESE JOURNAL OF CATALYSIS, 2018, 39 (06) : 1090 - 1098
  • [33] Synthesis of g-C3N4 microrods with superficial C, N dual vacancies for enhanced photocatalytic organic pollutant removal and H2O2 production
    Zhang, Zheng
    Zheng, Yanmei
    Xie, Hang
    Zhao, Jianjie
    Guo, Xinli
    Zhang, Weijie
    Fu, Qiuping
    Wang, Shaohua
    Xu, Qiang
    Huang, Ying
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 904
  • [34] Fabrication of interconnected flower-shaped macroporous P-doped g-C3N4 for enhancing visible-light-driven production of H2 and H2O2
    Iqbal, Waheed
    Liu, Ruonan
    Mao, Yanping
    Waqas, Muhammad
    Rauf, Muhammad
    Qin, Chuanguang
    MATERIALS TODAY CHEMISTRY, 2024, 41
  • [35] Introducing B-N unit boosts photocatalytic H2O2 production metal-free g-C3N4 nanosheets
    Wang, Weikang
    Zhang, Wei
    Cai, Yueji
    Wang, Qing
    Deng, Juan
    Chen, Jingsheng
    Jiang, Zhifeng
    Zhang, Yizhou
    Yu, Chao
    NANO RESEARCH, 2023, 16 (02) : 2177 - 2184
  • [36] Preparation of NiCoP-decorated g-C3N4 as an efficient photocatalyst for H2O2 production
    Yulan Peng
    Liang Zhou
    Lingzhi Wang
    Juying Lei
    Yongdi Liu
    Stéphane Daniele
    Jinlong Zhang
    Research on Chemical Intermediates, 2019, 45 : 5907 - 5917
  • [37] Introducing B-N unit boosts photocatalytic H2O2 production on metal-free g-C3N4 nanosheets
    Weikang Wang
    Wei Zhang
    Yueji Cai
    Qing Wang
    Juan Deng
    Jingsheng Chen
    Zhifeng Jiang
    Yizhou Zhang
    Chao Yu
    Nano Research, 2023, 16 (2) : 2177 - 2184
  • [38] Construction of g-C3N4 with three coordinated nitrogen (N3C) vacancies for excellent photocatalytic activities of N2 fixation and H2O2 production
    Xue, Yanjun
    Ma, Chaoqun
    Yang, Qingfeng
    Wang, Xinyu
    An, Shanna
    Zhang, Xiaoli
    Tian, Jian
    CHEMICAL ENGINEERING JOURNAL, 2023, 457
  • [39] Isotype junctioned nanotubes and nanosheets of g-C3N4 for enhanced visible-light driven photocatalytic H2O2 production
    Yunxiao Zhang
    Mengfan Fang
    Xiaorong Qian
    Li Zhang
    Pei Gu
    Yu Liu
    Haihua Yang
    Journal of Materials Research, 2021, 36 : 3495 - 3505
  • [40] Enhancement in Photocatalytic H2O2 Production over g-C3N4 Nanostructures: A Collaborative Approach of Nitrogen Deficiency and Supramolecular Precursors
    Fattahimoghaddam, Hossein
    Mahvelati-Shamsabadi, Tahereh
    Lee, Byeong-Kyu
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (12) : 4520 - 4530