On Kato's conditions for the inviscid limit of the two-dimensional stochastic Navier-Stokes equation

被引:1
作者
Wang, Ya-guang [1 ,2 ]
Zhao, Meng [3 ]
机构
[1] Shanghai Jiao Tong Univ, Ctr Appl Math, Sch Math Sci, MOE LSC & SHL MAC, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, SHL MAC, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
ZERO-VISCOSITY LIMIT; BOUNDARY-LAYERS; TURBULENCE;
D O I
10.1063/5.0175063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the asymptotic behavior of solutions of the two-dimensional stochastic Navier-Stokes (SNS) equation with no-slip boundary condition in the small viscosity limit. Several equivalent dissipation conditions of the Kato type are derived to ensure that the convergence from the SNS equation to the corresponding stochastic Euler equation holds in the energy space. We do not assume any smallness on the noise of the SNS equation.
引用
收藏
页数:16
相关论文
共 33 条
[11]  
Dudley R, 2002, REAL ANAL PROBABILIT
[12]   On the zero-viscosity limit of the Navier-Stokes equations in R+3 without analyticity [J].
Fei, Mingwen ;
Tao, Tao ;
Zhang, Zhifei .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 112 :170-229
[13]   MARTINGALE AND STATIONARY SOLUTIONS FOR STOCHASTIC NAVIER-STOKES EQUATIONS [J].
FLANDOLI, F ;
GATAREK, D .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 102 (03) :367-391
[14]   LOCAL AND GLOBAL EXISTENCE OF SMOOTH SOLUTIONS FOR THE STOCHASTIC EULER EQUATIONS WITH MULTIPLICATIVE NOISE [J].
Glatt-Holtz, Nathan E. ;
Vicol, Vlad C. .
ANNALS OF PROBABILITY, 2014, 42 (01) :80-145
[15]   A note on the Stokes operator and its powers [J].
Guermond J.-L. ;
Salgado A. .
Journal of Applied Mathematics and Computing, 2011, 36 (1-2) :241-250
[16]   Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions [J].
Iftimie, Dragos ;
Sueur, Franck .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (01) :145-175
[17]   On Kato's conditions for vanishing viscosity [J].
Kelliher, James P. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (04) :1711-1721
[18]   The Inviscid Limit for the Navier-Stokes Equations with Data Analytic Only Near the Boundary [J].
Kukavica, Igor ;
Vicol, Vlad ;
Wang, Fei .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 237 (02) :779-827
[19]  
Kuksin S, 2012, CAMB TRACT MATH, P1, DOI 10.1017/CBO9781139137119
[20]   Deterministic and stochastic 2D Navier-Stokes equations with anisotropic viscosity [J].
Liang, Siyu ;
Zhang, Ping ;
Zhu, Rongchan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 275 :473-508