On Kato's conditions for the inviscid limit of the two-dimensional stochastic Navier-Stokes equation

被引:1
作者
Wang, Ya-guang [1 ,2 ]
Zhao, Meng [3 ]
机构
[1] Shanghai Jiao Tong Univ, Ctr Appl Math, Sch Math Sci, MOE LSC & SHL MAC, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, SHL MAC, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
ZERO-VISCOSITY LIMIT; BOUNDARY-LAYERS; TURBULENCE;
D O I
10.1063/5.0175063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the asymptotic behavior of solutions of the two-dimensional stochastic Navier-Stokes (SNS) equation with no-slip boundary condition in the small viscosity limit. Several equivalent dissipation conditions of the Kato type are derived to ensure that the convergence from the SNS equation to the corresponding stochastic Euler equation holds in the energy space. We do not assume any smallness on the noise of the SNS equation.
引用
收藏
页数:16
相关论文
共 33 条
[1]  
[Anonymous], 2007, BROWNIAN MOTION STOC, P451
[2]   Mathematics and turbulence: where do we stand? [J].
Bardos, Claude W. ;
Titi, Edriss S. .
JOURNAL OF TURBULENCE, 2013, 14 (03) :42-76
[3]   STOCHASTIC NAVIER-STOKES EQUATIONS [J].
BENSOUSSAN, A .
ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) :267-304
[4]   STOCHASTIC NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS [J].
BENSOUSSAN, A ;
TEMAN, ER .
ISRAEL JOURNAL OF MATHEMATICS, 1972, 11 (01) :95-+
[5]  
BENSOUSSAN A, 1973, J FUNCT ANAL, V13, P195
[6]   2-D Euler equation perturbed by noise [J].
Bessaih, Hakima ;
Flandoli, Franco .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (01) :35-54
[7]  
Brezis H, 2011, UNIVERSITEXT, P1
[8]  
Chern S.S., 1984, MATH SCI RES I PUBL, V2, P85, DOI DOI 10.1007/978-1-4612-1110-5_6
[9]   Inviscid limit for 2D stochastic Navier-Stokes equations [J].
Cipriano, Fernanda ;
Torrecilla, Ivan .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (06) :2405-2426
[10]  
Da Prato G., 1992, Encyclopedia of Mathematics and Its Applications