ZSM-5 Membranes Fabricated through Template-Free Gel for Energy Storage

被引:3
作者
Zhang, Dezhu [1 ]
Fan, Su [2 ]
Xu, Kenan [2 ]
Liu, Haotian [2 ]
Chang, Nana [1 ]
Wang, Yijie [1 ]
Wang, Yixing [1 ]
Huang, Kang [1 ,2 ]
Xu, Zhi [3 ]
机构
[1] Suzhou Lab, Suzhou 215123, Peoples R China
[2] Nanjing Tech Univ, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Peoples R China
[3] East China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy efficiency - Flow batteries - Membranes - Zeolites;
D O I
10.1021/acs.iecr.4c01356
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Vanadium flow battery (VFB) shows great potential in balancing the volatility of renewable energy. In this work, we investigated, for the first time, the various properties of crystalline ZSM-5 membranes prepared through the organic template-free gel strategy in VFB. The subnano windows (similar to 0.55 nm) of ZSM-5 zeolite provided selective transport paths for protons (similar to 0.27 nm) and blocked the vanadium (>0.6 nm) migration through pore repulsion effect. The zeolite membranes exhibited a very low vanadium penetration rate (0.05 mmol L-1 h(-1)), achieving a Coulombic efficiency (CE) of 96.1%, a voltage efficiency of 78.3%, and an energy efficiency of 75.3% at the current density of 40 mA cm(-2). Notably, ZSM-5 prepared using the template-free strategy eliminates the need for a high-temperature calcination step, and the membrane has a lower defect density and exhibits a higher CE. The self-discharge time of the ZSM-5 zeolite membrane increased up to 78 h. Furthermore, the charge-discharge performance kept stable more than 300 cycles at 60 mA cm(-2).
引用
收藏
页码:13282 / 13290
页数:9
相关论文
共 47 条
[1]  
Dowling J.A., Rinaldi K.Z., Ruggles T.H., Davis S.J., Yuan M., Tong F., Lewis N.S., Caldeira K., Role of Long-Duration Energy Storage in Variable Renewable Electricity Systems, Joule, 4, 9, pp. 1907-1928, (2020)
[2]  
Shan R., Reagan J., Castellanos S., Kurtz S., Kittner N., Evaluating Emerging Long-Duration Energy Storage Technologies, Renewable Sustainable Energy Rev., 159, (2022)
[3]  
Dai Q., Liu Z., Huang L., Wang C., Zhao Y., Fu Q., Zheng A., Zhang H., Li X., Publisher Correction: Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery, Nat. Commun., 11, 1, (2020)
[4]  
Li X., Zhang H., Mai Z., Zhang H., Vankelecom I., Ion Exchange Membranes for Vanadium Redox Flow Battery (VRB) Applications, Energy Environ. Sci., 4, 4, pp. 1147-1160, (2011)
[5]  
Qian J., Cai S., Hu J., Wang C., Li G., Preparation and Properties of Quaternary Ammonium Anion Exchange Membranes with Flexible Side Chains for the Vanadium Redox Flow Battery, Ind. Eng. Chem. Res., 62, 6, pp. 2719-2728, (2023)
[6]  
Wei W., Nan S., Wang H., Xu S., Liu X., He R., Design and Preparation of Sulfonated Polymer Membranes for Zn/MnO<sub>2</sub> Flow Batteries with Assistance of Machine Learning, J. Membr. Sci., 672, (2023)
[7]  
Khataee A., Nederstedt H., Jannasch P., Lindstrom R.W., Poly(Arylene Alkylene)s Functionalized with Perfluorosulfonic Acid Groups as Proton Exchange Membranes for Vanadium Redox Flow Batteries, J. Membr. Sci., 671, (2023)
[8]  
Lu W., Yuan Z., Zhao Y., Li X., Zhang H., Vankelecom I.F.J., High-Performance Porous Uncharged Membranes for Vanadium Flow Battery Applications Created by Tuning Cohesive and Swelling Forces, Energy Environ. Sci., 9, 7, pp. 2319-2325, (2016)
[9]  
Yuan Z., Duan Y., Zhang H., Li X., Zhang H., Vankelecom I., Advanced Porous Membranes with Ultra-High Selectivity and Stability for Vanadium Flow Batteries, Energy Environ. Sci., 9, 2, pp. 441-447, (2016)
[10]  
Chen H., Kang C., Shang E., Liu G., Chen D., Yuan Z., Montmorillonite-Based Separator Enables a Long-Life Alkaline Zinc-Iron Flow Battery, Ind. Eng. Chem. Res., 62, 1, pp. 676-684, (2023)