The root cause of disruptive NTMs and paths to stable operation in DIII-D ITER baseline scenario plasmas

被引:1
作者
Bardoczi, L. [1 ,2 ]
Richner, N. J. [3 ]
Logan, N. C. [4 ,5 ]
Strait, E. J. [1 ]
Holcomb, C. T. [4 ]
Zhu, J. [6 ]
Rea, C. [6 ]
机构
[1] Gen Atom, San Diego, CA 92121 USA
[2] Univ Calif Irvine, Irvine, CA 92697 USA
[3] Oak Ridge Associated Univ, Oak Ridge, TN USA
[4] Lawrence Livermore Natl Lab, Livermore, CA USA
[5] Columbia Univ, New York, NY USA
[6] MIT, Plasma Sci & Fus Ctr, Cambridge, MA USA
关键词
tearing; stability; tokamak; MHD;
D O I
10.1088/1741-4326/ad7787
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Analyses of the DIII-D ITER Baseline Scenario database support that the disruptive m,n=2,1 magnetic islands are pressure gradient driven, non-linear instabilities seeded in a sequence of stochastic transient magnetic perturbations, and that the current profile relaxation does not affect the m,n=2,1 island onset rate. At low torque, these Neoclassical Tearing Modes are most commonly seeded by non-linear 3-wave coupling when the differential rotation between the q=1 & q=2 rational surfaces approaches zero. Lack of statistically significant difference between the current profiles of stable and unstable states, as well as lack of correlation between the tearing mode onset rate and the current profile relaxation both reject causality between the current profile evolution and the 2,1 magnetic island onsets in these plasmas. These support that preserving the differential rotation between the q=1 and q=2 rational surfaces is key to long pulse stable operation in the plasma scenario planned for ITER, while optimization of the current profile within the explored parameter space may lead to much weaker improvements than sustaining the differential rotation.
引用
收藏
页数:11
相关论文
共 23 条
  • [11] Influence of rotation on the (m, n) = (3,2) neoclassical tearing mode threshold in the ASDEX Upgrade
    Fietz, S.
    Maraschek, M.
    Zohm, H.
    Reich, M.
    Barrera, L.
    McDermott, R. M.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (08)
  • [12] Phase locking of multi-helicity neoclassical tearing modes in tokamak plasmas
    Fitzpatrick, Richard
    [J]. PHYSICS OF PLASMAS, 2015, 22 (04)
  • [13] Characterization of the plasma current quench during disruptions in the National Spherical Torus Experiment
    Gerhardt, S. P.
    Menard, J. E.
    [J]. NUCLEAR FUSION, 2009, 49 (02)
  • [14] Disruptive neoclassical tearing mode seeding in DIII-D with implications for ITER
    La Haye, R. J.
    Chrystal, C.
    Strait, E. J.
    Callen, J. D.
    Hegna, C. C.
    Howell, E. C.
    Okabayashi, M.
    Wilcox, R. S.
    [J]. NUCLEAR FUSION, 2022, 62 (05)
  • [15] Lazarro E., 2012, P 24 INT C FUS EN, pp EX/P4
  • [16] Luce T.C., 2014, Expanding the Physics Basis of the Baseline Q = 10 Scenario Toward ITER Conditions
  • [17] Event hazard function learning and survival analysis for tearing mode onset characterization
    Olofsson, K. E. J.
    Humphreys, D. A.
    La Haye, R. J.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (08)
  • [18] Magnetic-Flux Pumping in High-Performance, Stationary Plasmas with Tearing Modes
    Petty, C. C.
    Austin, M. E.
    Holcomb, C. T.
    Jayakumar, R. J.
    La Haye, R. J.
    Luce, T. C.
    Makowski, M. A.
    Politzer, P. A.
    Wade, M. R.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (04)
  • [19] Magnetic diagnostic system of the DIII-D tokamak
    Strait, EJ
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (02)
  • [20] Modelling and experiment to stabilize disruptive tearing modes in the ITER baseline scenario in DIII-D
    Turco, F.
    Luce, T. C.
    Boyes, W.
    Hanson, J. M.
    Hyatt, A. W.
    [J]. NUCLEAR FUSION, 2024, 64 (07)