The root cause of disruptive NTMs and paths to stable operation in DIII-D ITER baseline scenario plasmas

被引:1
作者
Bardoczi, L. [1 ,2 ]
Richner, N. J. [3 ]
Logan, N. C. [4 ,5 ]
Strait, E. J. [1 ]
Holcomb, C. T. [4 ]
Zhu, J. [6 ]
Rea, C. [6 ]
机构
[1] Gen Atom, San Diego, CA 92121 USA
[2] Univ Calif Irvine, Irvine, CA 92697 USA
[3] Oak Ridge Associated Univ, Oak Ridge, TN USA
[4] Lawrence Livermore Natl Lab, Livermore, CA USA
[5] Columbia Univ, New York, NY USA
[6] MIT, Plasma Sci & Fus Ctr, Cambridge, MA USA
关键词
tearing; stability; tokamak; MHD;
D O I
10.1088/1741-4326/ad7787
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Analyses of the DIII-D ITER Baseline Scenario database support that the disruptive m,n=2,1 magnetic islands are pressure gradient driven, non-linear instabilities seeded in a sequence of stochastic transient magnetic perturbations, and that the current profile relaxation does not affect the m,n=2,1 island onset rate. At low torque, these Neoclassical Tearing Modes are most commonly seeded by non-linear 3-wave coupling when the differential rotation between the q=1 & q=2 rational surfaces approaches zero. Lack of statistically significant difference between the current profiles of stable and unstable states, as well as lack of correlation between the tearing mode onset rate and the current profile relaxation both reject causality between the current profile evolution and the 2,1 magnetic island onsets in these plasmas. These support that preserving the differential rotation between the q=1 and q=2 rational surfaces is key to long pulse stable operation in the plasma scenario planned for ITER, while optimization of the current profile within the explored parameter space may lead to much weaker improvements than sustaining the differential rotation.
引用
收藏
页数:11
相关论文
共 23 条
  • [1] The onset distribution of rotating m,n=2,1 tearing modes and its consequences on the stability of high-confinement-mode plasmas in DIII-D
    Bardoczi, L.
    Richner, N. J.
    Logan, N. C.
    [J]. NUCLEAR FUSION, 2023, 63 (12)
  • [2] Empirical probability and machine learning analysis of m, n=2, 1 tearing mode onset parameter dependence in DIII-D H-mode scenarios
    Bardoczi, L.
    Richner, N. J.
    Zhu, J.
    Rea, C.
    Logan, N. C.
    [J]. PHYSICS OF PLASMAS, 2023, 30 (09)
  • [3] Direct preemptive stabilization of m, n=2, 1 neoclassical tearing modes by electron cyclotron current drive in the DIII-D low-torque ITER baseline scenario
    Bardoczi, L.
    La Haye, R. J.
    Strait, E. J.
    Logan, N. C.
    Smith, S. P.
    Richner, N. J.
    Callen, J. D.
    [J]. NUCLEAR FUSION, 2023, 63 (09)
  • [4] Bardóczi L, 2021, PHYS REV LETT, V127, DOI 10.1103/PhysRevLett.127.055002
  • [5] Quantitative modeling of neoclassical tearing mode driven fast ion transport in integrated TRANSP simulations
    Bardoczi, L.
    Podesta, M.
    Heidbrink, W. W.
    Van Zeeland, M. A.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (05)
  • [6] Bardoczi L., 2021, Neoclassical Tearing Mode Seeding by Nonlinear Three-Wave Interactions in Tokamaks
  • [7] Improved charge-coupled device detectors for high-speed, charge exchange spectroscopy studies on the DIII-D tokamak
    Burrell, KH
    Gohil, P
    Groebner, RJ
    Kaplan, DH
    Robinson, JI
    Solomon, WM
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (10) : 3455 - 3457
  • [8] Callen J.D., 2021, Bulletin of the American Physical Society, Department of Plasma Physics
  • [9] Fast seeding of NTMs by sawtooth crashes in TCV and their preemption using ECRH
    Canal, G. P.
    Duval, B. P.
    Felici, F.
    Goodman, T. P.
    Graves, J. P.
    Pochelon, A.
    Reimerdes, H.
    Sauter, O.
    Testa, D.
    [J]. NUCLEAR FUSION, 2013, 53 (11)
  • [10] ISLAND BOOTSTRAP CURRENT MODIFICATION OF THE NONLINEAR DYNAMICS OF THE TEARING MODE
    CARRERA, R
    HAZELTINE, RD
    KOTSCHENREUTHER, M
    [J]. PHYSICS OF FLUIDS, 1986, 29 (04) : 899 - 902