Femtosecond laser-induced dewetting of sub-10-nm nanostructures on silicon in ambient air

被引:1
作者
Luo, Hao [1 ,2 ,3 ,4 ]
Wang, Xiaoduo [1 ,2 ,3 ]
Wen, Yangdong [5 ]
Qiu, Ye [1 ,2 ,3 ,4 ]
Liu, Lianqing [1 ,2 ,3 ]
Yu, Haibo [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Inst Robot, Shenyang 110016, Peoples R China
[3] Chinese Acad Sci, Inst Intelligent Mfg, Shenyang 100049, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Southwest Jiaotong Univ, Inst Urban Rail Transportat, Chengdu 610000, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
ABLATION;
D O I
10.1063/5.0205219
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
To realize nanoscale manufacturing based on laser direct writing technology, objective lenses with high numerical apertures immersed in water or oil are necessary. The use of liquid medium restricts its application in semiconductors. Achieving nanoscale features on silicon by laser direct writing in a low refractive index medium has been a challenge. In this work, a microsphere assisted femtosecond laser far-field induced dewetting approach is proposed. A reduction in the full-width at half-maximum of the focused light spot is realized by modulating tightly focused light through microspheres and achieving a minimum feature size of 9 nm on silicon in ambient air with energy smaller than the ablation threshold. Theoretical analysis and numerical simulation of laser processing are performed based on a two-temperature model. Furthermore, we explored the potential of femtosecond laser-induced dewetting in nanolithography and demonstrated its ability to achieve an arbitrary structure on silicon. Our work enables laser-based far-field sub-10-nm feature etching on a large-scale, providing a novel avenue for nanoscale silicon manufacturing.
引用
收藏
页数:7
相关论文
共 33 条
[1]  
[Anonymous], 2001, RESOLUTION ENHANCEME
[2]   Direct and High-Throughput Fabrication of Mie-Resonant Metasurfaces via Single-Pulse Laser Interference [J].
Berzins, Jonas ;
Indrisiunas, Simonas ;
van Erve, Koen ;
Nagarajan, Arvind ;
Fasold, Stefan ;
Steinert, Michael ;
Gerini, Giampiero ;
Gecys, Paulius ;
Pertsch, Thomas ;
Baumer, Stefan M. B. ;
Setzpfandt, Frank .
ACS NANO, 2020, 14 (05) :6138-6149
[3]   Femtosecond laser ablation of silicon-modification thresholds and morphology [J].
Bonse, J ;
Baudach, S ;
Krüger, J ;
Kautek, W ;
Lenzner, M .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 74 (01) :19-25
[4]   Single-pulse femtosecond laser ablation of monocrystalline silicon: A modeling and experimental study [J].
Chen, Chong ;
Zhang, Fan ;
Zhang, Yang ;
Xiong, Xin ;
Ju, Bing-Feng ;
Cui, Hailong ;
Chen, Yuan Liu .
APPLIED SURFACE SCIENCE, 2022, 576
[5]   Microsphere enhanced optical imaging and patterning: From physics to applications [J].
Chen, Lianwei ;
Zhou, Yan ;
Li, Yang ;
Hong, Minghui .
APPLIED PHYSICS REVIEWS, 2019, 6 (02)
[6]   Laser precision engineering: from microfabrication to nanoprocessing [J].
Chong, Tow C. ;
Hong, Minghui H. ;
Shi, Luping P. .
LASER & PHOTONICS REVIEWS, 2010, 4 (01) :123-143
[7]   Direct micro-structuring of Si(111) surfaces through nanosecond laser Bessel beams [J].
Demirci, Erkan ;
Kaya, Elif Turkan Aksit ;
Sahin, Ramazan .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2020, 126 (06)
[8]   Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size [J].
Gan, Zongsong ;
Cao, Yaoyu ;
Evans, Richard A. ;
Gu, Min .
NATURE COMMUNICATIONS, 2013, 4
[9]   Evidencing the nonlinearity independence of resolution in femtosecond laser ablation [J].
Garcia-Lechuga, M. ;
Uteza, O. ;
Sanner, N. ;
Grojo, D. .
OPTICS LETTERS, 2020, 45 (04) :952-955
[10]   Picosecond laser ablation of SiO2 layers on silicon substrates [J].
Hermann, Sonja ;
Harder, Nils-Peter ;
Brendel, Rolf ;
Herzog, Dirk ;
Haferkamp, Heinz .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2010, 99 (01) :151-158