Abrasive waterjet drilling process enhancement using machine learning and evolutionary algorithms

被引:1
|
作者
Nagarajan, Lenin [1 ]
Mahalingam, Siva Kumar [1 ]
Vasudevan, Balaji [1 ]
机构
[1] Vel Tech Rangarajan Dr Sagunthala R&D Inst Sci & T, Mech Engn, Chennai 600062, Tamil Nadu, India
关键词
Drilling; Inconel-718; coating; machine-learning; algorithms;
D O I
10.1080/10426914.2024.2394992
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To improve the abrasive waterjet drilling procedure for yttrium-stabilized zirconia-coated Inconel 718 superalloy, this study suggests an integrated approach using machine learning and an evolutionary algorithm. The objective is to simultaneously minimize the erosion diameter and taper angle of the drilled holes by identifying the best combination of drilling parameters such as stand-off distance, abrasive flow rate, waterjet pressure, and angle of impact. The machine learning models are developed using the random forest algorithm after tuning its hyperparameters to predict the erosion diameter and taper angle. The multi-verse optimization (MVO) algorithm is used to identify the best combination of drilling parameters. The comparison of results proved the efficacy of MVO over other algorithms. Confirmation experiment results are also in line with the results of MVO, since the percentage of deviation is meager. This integrative approach has the capability of significantly improving aerospace and industrial abrasive waterjet drilling operations.
引用
收藏
页码:2166 / 2182
页数:17
相关论文
共 50 条
  • [31] Disturbance observer using machine learning algorithms
    Han D.-K.
    Fitri I.R.
    Kim J.-S.
    Kim, Jung-Su (jungsu@seoultech.ac.kr), 2018, Institute of Control, Robotics and Systems (24) : 386 - 392
  • [32] Classifying Ransomware Using Machine Learning Algorithms
    Egunjobi, Samuel
    Parkinson, Simon
    Crampton, Andrew
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING (IDEAL 2019), PT II, 2019, 11872 : 45 - 52
  • [33] Estimating Deforestation using Machine Learning Algorithms
    Nichols, Keanu
    Hosein, Patrick
    2021 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT DATA SCIENCE TECHNOLOGIES AND APPLICATIONS (IDSTA), 2021, : 82 - 87
  • [34] To Identify Malware Using Machine Learning Algorithms
    Pujari, Shivam
    Mandoria, H. L.
    Shrivastava, R. P.
    Singh, Rajesh
    COMPUTING SCIENCE, COMMUNICATION AND SECURITY, 2022, 1604 : 117 - 127
  • [35] Mindful Machine Learning Using Machine Learning Algorithms to Predict the Practice of Mindfulness
    Sauer, Sebastian
    Buettner, Ricardo
    Heidenreich, Thomas
    Lemke, Jana
    Berg, Christoph
    Kurz, Christoph
    EUROPEAN JOURNAL OF PSYCHOLOGICAL ASSESSMENT, 2018, 34 (01) : 6 - 13
  • [36] Ransomware detection using machine learning algorithms
    Bae, Seong Il
    Lee, Gyu Bin
    Im, Eul Gyu
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (18)
  • [37] Business intelligence using machine learning algorithms
    Morteza Hamzehi
    Soodeh Hosseini
    Multimedia Tools and Applications, 2022, 81 : 33233 - 33251
  • [38] Business intelligence using machine learning algorithms
    Hamzehi, Morteza
    Hosseini, Soodeh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (23) : 33233 - 33251
  • [39] URL filtering using machine learning algorithms
    Aljahdalic, Asia Othman
    Banafee, Shoroq
    Aljohani, Thana
    INFORMATION SECURITY JOURNAL, 2024, 33 (03): : 193 - 203
  • [40] Fall Detection Using Machine Learning Algorithms
    Vallabh, Pranesh
    Malekian, Reza
    Ye, Ning
    Bogatinoska, Dijana Capeska
    2016 24TH INTERNATIONAL CONFERENCE ON SOFTWARE, TELECOMMUNICATIONS AND COMPUTER NETWORKS (SOFTCOM), 2016, : 51 - 59