Prediction of Remaining Useful Life of Battery Using Partial Discharge Data

被引:0
作者
Hussain, Qaiser [1 ]
Yun, Sunguk [1 ]
Jeong, Jaekyun [1 ]
Lee, Mangyu [1 ]
Kim, Jungeun [2 ]
机构
[1] Kongju Natl Univ, Dept Comp Engn, Cheonan 31080, South Korea
[2] Inha Univ, Dept Comp Engn, Incheon 22212, South Korea
基金
新加坡国家研究基金会;
关键词
partial data; battery management system (BMS); discharge data; deep learning; remaining useful life of battery; STATE; SYSTEMS; CHARGE; MODEL;
D O I
10.3390/electronics13173475
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lithium-ion batteries are cornerstones of renewable technologies, which is why they are used in many applications, specifically in electric vehicles and portable electronics. The accurate estimation of the remaining useful life (RUL) of a battery is pertinent for durability, efficient operation, and stability. In this study, we have proposed an approach to predict the RUL of a battery using partial discharge data from the battery cycles. Unlike other studies that use complete cycle data and face reproducibility issues, our research utilizes only partial data, making it both practical and reproducible. To analyze this partial data, we applied various deep learning methods and compared multiple models, among which ConvLSTM showed the best performance, with an RMSE of 0.0824. By comparing the performance of ConvLSTM at various ratios and ranges, we have confirmed that using partial data can achieve a performance equal to or better than that obtained when using complete cycle data.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Prediction of Lithium-ion Battery Remaining Useful Life Based on Hybrid Data-Driven Method with Optimized Parameter
    Cai, Yishan
    Yang, Lin
    Deng, Zhongwei
    Zhao, Xiaowei
    Deng, Hao
    PROCEEDINGS OF 2017 2ND INTERNATIONAL CONFERENCE ON POWER AND RENEWABLE ENERGY (ICPRE), 2017, : 1 - 6
  • [42] Remaining useful life prediction using multi-scale deep convolutional neural network
    Li, Han
    Zhao, Wei
    Zhang, Yuxi
    Zio, Enrico
    APPLIED SOFT COMPUTING, 2020, 89
  • [43] A hybrid framework for predicting the remaining useful life of battery using Gaussian process regression
    Li, Jiabo
    Ye, Min
    Wang, Yan
    Wang, Qiao
    Wei, Meng
    JOURNAL OF ENERGY STORAGE, 2023, 66
  • [44] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on the Partial Voltage and Temperature
    Yang, Yanru
    Wen, Jie
    Liang, Jianyu
    Shi, Yuanhao
    Tian, Yukai
    Wang, Jiang
    SUSTAINABILITY, 2023, 15 (02)
  • [45] Lithium-Ion Battery Remaining Useful Life Prognostics Using Data-Driven Deep Learning Algorithm
    Li, Lyu
    Song, Yuchen
    Peng, Yu
    Liu, Datong
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 1094 - 1100
  • [46] Review of Hybrid Prognostics Approaches for Remaining Useful Life Prediction of Engineered Systems, and an Application to Battery Life Prediction
    Liao, Linxia
    Koettig, Felix
    IEEE TRANSACTIONS ON RELIABILITY, 2014, 63 (01) : 191 - 207
  • [47] Bidirectional handshaking LSTM for remaining useful life prediction
    Elsheikh, Ahmed
    Yacout, Soumaya
    Ouali, Mohamed-Salah
    NEUROCOMPUTING, 2019, 323 : 148 - 156
  • [48] A BiGRU method for remaining useful life prediction of machinery
    She, Daoming
    Jia, Minping
    MEASUREMENT, 2021, 167
  • [49] Remaining Useful Life Prediction Using Temporal Convolution with Attention
    Tan, Wei Ming
    Teo, T. Hui
    AI, 2021, 2 (01) : 48 - 70
  • [50] Remaining useful life prediction of lithium-ion battery using a novel particle filter framework with grey neural network
    Chen, Lin
    Ding, Yunhui
    Liu, Bohao
    Wu, Shuxiao
    Wang, Yaodong
    Pan, Haihong
    ENERGY, 2022, 244