Machine Learning-Driven Discovery of Quadruple-Negative Breast Cancer Subtypes from Gene Expression Data

被引:0
|
作者
Sahoo, Bikram [1 ]
Jinna, Nikita [2 ]
Rida, Padmashree [3 ]
Pinnix, Zandra [4 ]
Zelikovsky, Alex [1 ]
机构
[1] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30302 USA
[2] City Hope Comprehens Canc Ctr, Duarte, CA 91010 USA
[3] Novazoi Theranost, Salt Lake City, UT 84105 USA
[4] Univ N Carolina, Dept Biol & Marine Biol, Wilmington, NC 28403 USA
来源
BIOINFORMATICS RESEARCH AND APPLICATIONS, PT I, ISBRA 2024 | 2024年 / 14954卷
关键词
Quadruple-Negative Breast Cancer (QNBC); QNBC subtypes; Unsupervised Clustering; Variational Autoencoder; RECEPTOR;
D O I
10.1007/978-981-97-5128-0_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unraveling the intricacies of Quadruple-Negative Breast Cancer (QNBC), this study leverages advanced analytics on RNAseq gene expression data. Employing unsupervised clustering techniques, our robust methodology encompasses data preprocessing for interpretability, dimensionality reduction via variational autoencoders and Principal Component Analysis (PCA), and optimization of k-means clustering using internal validation indices. The analysis unveils two distinct QNBC subtypes, substantiated by high Silhouette (0.24) and Calinski-Harabasz (28.81) scores. Statistical profiling elucidates the genetic signatures characterizing these clusters, with Cluster 1 exhibiting genes like OR6P1 and TMEM247, while Cluster 2 displays distinct markers such as RNF17 and PRAC1. These data-driven patient stratifications hold promise for personalized assessments and targeted interventions, contingent upon clinical validation. This research highlights the synergy of machine learning and statistical analysis in charting a course toward more effective QNBC management strategies.
引用
收藏
页码:182 / 195
页数:14
相关论文
共 3 条
  • [1] Identification of Gene Expression in Different Stages of Breast Cancer with Machine Learning
    Abidalkareem, Ali
    Ibrahim, Ali K.
    Abd, Moaed
    Rehman, Oneeb
    Zhuang, Hanqi
    CANCERS, 2024, 16 (10)
  • [2] Identification of a minimum number of genes to predict triple-negative breast cancer subgroups from gene expression profiles
    Akhouayri, Laila
    Ostano, Paola
    Mello-Grand, Maurizia
    Gregnanin, Ilaria
    Crivelli, Francesca
    Laurora, Sara
    Liscia, Daniele
    Leone, Francesco
    Santoro, Angela
    Mule, Antonino
    Guarino, Donatella
    Maggiore, Claudia
    Carlino, Angela
    Magno, Stefano
    Scatolini, Maria
    Di Leone, Alba
    Masetti, Riccardo
    Chiorino, Giovanna
    HUMAN GENOMICS, 2022, 16 (01)
  • [3] High PPFIA1 expression promotes cancer survival by suppressing CD8+T cells in breast cancer: drug discovery and machine learning approach
    Chu, Jinah
    Min, Kyueng-Whan
    Kim, Dong-Hoon
    Son, Byoung Kwan
    Kim, Hyung Suk
    Jung, Un Suk
    Kwon, Mi Jung
    Do, Sung-Im
    BREAST CANCER, 2023, 30 (02) : 259 - 270