Multiplicity results for biharmonic equations with critical growth

被引:0
作者
Pan, Wen-Wu [1 ]
机构
[1] Sichuan Univ Sci & Engn, Sch Math & Stat, Zigong 643000, Peoples R China
基金
中国国家自然科学基金;
关键词
Biharmonic equations; Critical nonlinearities; Variational methods; 4TH-ORDER ELLIPTIC-EQUATIONS; NONTRIVIAL SOLUTIONS; EXISTENCE;
D O I
10.1007/s41808-024-00300-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with multiplicity and bifurcation results for nonlinear problems driven by the biharmonic operator Delta(2) and involving a critical Sobolev term. In particular, we consider {Delta(2)u = lambda|u|(2 & lowast;-2 )u + f(x, u) in Omega u = Delta u = 0 on partial derivative Omega, where Omega subset of R(n )is an open bounded set with continuous boundary, n > 4, lambda is a positive real parameter, 2(& lowast; )= 2n/(n - 4) is the critical Sobolev exponent and f is a Carath & eacute;odory function satisfying different subcritical conditions.
引用
收藏
页码:1235 / 1253
页数:19
相关论文
共 26 条