ON AUTOMORPHISM-INVARIANT MULTIPLICATION MODULES OVER A NONCOMMUTATIVE RING

被引:0
作者
Thuyet, Le Van [1 ]
Quynh, Truong Cong [2 ]
机构
[1] Hue Univ, Coll Educ, Dept Math, 34 Le Loi, Hue City, Vietnam
[2] Univ Danang, Univ Sci & Educ, Dept Math, 459 Ton Duc Thang, Danang City, Vietnam
来源
INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA | 2024年 / 36卷
关键词
Automorphism-invariant module; duo ring; quasi-duo ring; mul- tiplication module; commutative multiplication of ideals;
D O I
10.24330/ieja.1411145
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. One of the important classes of modules is the class of multiplication modules over a commutative ring. This topic has been considered by many authors and numerous results have been obtained in this area. After that, Tuganbaev also considered the multiplication module over a noncommutative ring. In this paper, we continue to consider the automorphism-invariance of multiplication modules over a noncommutative ring. We prove that if R is a right duo ring and M is a multiplication, finitely generated right R-module with a generating set {m1, ... , mn} such that r(mi) = 0 and [miR : M] subset of C(R) the center of R, then M is projective. Moreover, if R is a right duo, left quasi-duo, CMI ring and M is a multiplication, non-singular, automorphism-invariant, finitely generated right R-module with a generating set {m1, ... , mn} such that r(mi) = 0 and [miR : M] subset of C(R) the center of R, then MR similar to= R is injective.
引用
收藏
页码:73 / 88
页数:16
相关论文
共 24 条
[11]   Quasi-injective multiplication modules [J].
Singh, S ;
Al-Shaniafi, Y .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (07) :3329-3334
[12]   Rings of Invariant Module Type and Automorphism-Invariant Modules [J].
Singh, Surjeet ;
Srivastava, Ashish K. .
RING THEORY AND ITS APPLICATIONS: RING THEORY SESSION IN HONOR OF T.Y. LAM ON HIS 70TH BIRTHDAY, 2014, 609 :299-+
[13]  
Smith P. F., 1994, Period. Math. Hungar., V29, P163
[14]   SOME REMARKS ON MULTIPLICATION MODULES [J].
SMITH, PF .
ARCHIV DER MATHEMATIK, 1988, 50 (03) :223-235
[15]  
Srivastava A. K., 2021, Invariance of modules under automorphisms of their envelopes and covers
[16]  
STENSTROM B, 1975, RINGS QUOTIENTS
[17]   ON LEFT QF-3 RINGS [J].
TACHIKAWA, H .
PACIFIC JOURNAL OF MATHEMATICS, 1970, 32 (01) :255-+
[18]   Automorphism-invariant non-singular rings and modules [J].
Tuganbaev, A. A. .
JOURNAL OF ALGEBRA, 2017, 485 :247-253
[19]  
Tuganbaev A. A., 2004, Journal of Mathematical Sciences, V123, DOI DOI 10.1023/B:JOTH.0000036653.76231.05
[20]  
Tuganbaev A. A., 2015, J MATH SCI, V206, P694, DOI DOI 10.1007/s10958-015-2346-0